MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   Unicode version

Theorem undom 8048
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
undom  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )

Proof of Theorem undom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . . . 7  |-  Rel  ~<_
21brrelex2i 5159 . . . . . 6  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 7969 . . . . . 6  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 17 . . . . 5  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 256 . . . 4  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
61brrelexi 5158 . . . . . . 7  |-  ( C  ~<_  D  ->  C  e.  _V )
7 difss 3737 . . . . . . 7  |-  ( C 
\  A )  C_  C
8 ssdomg 8001 . . . . . . 7  |-  ( C  e.  _V  ->  (
( C  \  A
)  C_  C  ->  ( C  \  A )  ~<_  C ) )
96, 7, 8mpisyl 21 . . . . . 6  |-  ( C  ~<_  D  ->  ( C  \  A )  ~<_  C )
10 domtr 8009 . . . . . 6  |-  ( ( ( C  \  A
)  ~<_  C  /\  C  ~<_  D )  ->  ( C  \  A )  ~<_  D )
119, 10mpancom 703 . . . . 5  |-  ( C  ~<_  D  ->  ( C  \  A )  ~<_  D )
121brrelex2i 5159 . . . . . . 7  |-  ( ( C  \  A )  ~<_  D  ->  D  e.  _V )
13 domeng 7969 . . . . . . 7  |-  ( D  e.  _V  ->  (
( C  \  A
)  ~<_  D  <->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
1412, 13syl 17 . . . . . 6  |-  ( ( C  \  A )  ~<_  D  ->  ( ( C  \  A )  ~<_  D  <->  E. y ( ( C 
\  A )  ~~  y  /\  y  C_  D
) ) )
1514ibi 256 . . . . 5  |-  ( ( C  \  A )  ~<_  D  ->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) )
1611, 15syl 17 . . . 4  |-  ( C  ~<_  D  ->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) )
175, 16anim12i 590 . . 3  |-  ( ( A  ~<_  B  /\  C  ~<_  D )  ->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
1817adantr 481 . 2  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
19 eeanv 2182 . . 3  |-  ( E. x E. y ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  <->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
20 simprll 802 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  A  ~~  x )
21 simprrl 804 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( C  \  A
)  ~~  y )
22 disjdif 4040 . . . . . . . 8  |-  ( A  i^i  ( C  \  A ) )  =  (/)
2322a1i 11 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  i^i  ( C  \  A ) )  =  (/) )
24 ss2in 3840 . . . . . . . . . 10  |-  ( ( x  C_  B  /\  y  C_  D )  -> 
( x  i^i  y
)  C_  ( B  i^i  D ) )
2524ad2ant2l 782 . . . . . . . . 9  |-  ( ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  (
x  i^i  y )  C_  ( B  i^i  D
) )
2625adantl 482 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  i^i  y
)  C_  ( B  i^i  D ) )
27 simplr 792 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( B  i^i  D
)  =  (/) )
28 sseq0 3975 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  C_  ( B  i^i  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( x  i^i  y )  =  (/) )
2926, 27, 28syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  i^i  y
)  =  (/) )
30 undif2 4044 . . . . . . . 8  |-  ( A  u.  ( C  \  A ) )  =  ( A  u.  C
)
31 unen 8040 . . . . . . . 8  |-  ( ( ( A  ~~  x  /\  ( C  \  A
)  ~~  y )  /\  ( ( A  i^i  ( C  \  A ) )  =  (/)  /\  (
x  i^i  y )  =  (/) ) )  -> 
( A  u.  ( C  \  A ) ) 
~~  ( x  u.  y ) )
3230, 31syl5eqbrr 4689 . . . . . . 7  |-  ( ( ( A  ~~  x  /\  ( C  \  A
)  ~~  y )  /\  ( ( A  i^i  ( C  \  A ) )  =  (/)  /\  (
x  i^i  y )  =  (/) ) )  -> 
( A  u.  C
)  ~~  ( x  u.  y ) )
3320, 21, 23, 29, 32syl22anc 1327 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  u.  C
)  ~~  ( x  u.  y ) )
342ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  B  e.  _V )
351brrelex2i 5159 . . . . . . . . 9  |-  ( C  ~<_  D  ->  D  e.  _V )
3635ad3antlr 767 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  D  e.  _V )
37 unexg 6959 . . . . . . . 8  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  u.  D
)  e.  _V )
3834, 36, 37syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( B  u.  D
)  e.  _V )
39 unss12 3785 . . . . . . . . 9  |-  ( ( x  C_  B  /\  y  C_  D )  -> 
( x  u.  y
)  C_  ( B  u.  D ) )
4039ad2ant2l 782 . . . . . . . 8  |-  ( ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  (
x  u.  y ) 
C_  ( B  u.  D ) )
4140adantl 482 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  u.  y
)  C_  ( B  u.  D ) )
42 ssdomg 8001 . . . . . . 7  |-  ( ( B  u.  D )  e.  _V  ->  (
( x  u.  y
)  C_  ( B  u.  D )  ->  (
x  u.  y )  ~<_  ( B  u.  D
) ) )
4338, 41, 42sylc 65 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  u.  y
)  ~<_  ( B  u.  D ) )
44 endomtr 8014 . . . . . 6  |-  ( ( ( A  u.  C
)  ~~  ( x  u.  y )  /\  (
x  u.  y )  ~<_  ( B  u.  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )
4533, 43, 44syl2anc 693 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  u.  C
)  ~<_  ( B  u.  D ) )
4645ex 450 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  (
( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
4746exlimdvv 1862 . . 3  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( E. x E. y ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
4819, 47syl5bir 233 . 2  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  (
( E. x ( A  ~~  x  /\  x  C_  B )  /\  E. y ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
4918, 48mpd 15 1  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-en 7956  df-dom 7957
This theorem is referenced by:  domunsncan  8060  domunsn  8110  sucdom2  8156  unxpdom2  8168  sucxpdom  8169  fodomfi  8239  uncdadom  8993  cdadom1  9008
  Copyright terms: Public domain W3C validator