Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhb1dimN Structured version   Visualization version   Unicode version

Theorem dvhb1dimN 36274
Description: Two expressions for the 1-dimensional subspaces of vector space H, in the isomorphism B case where the 2nd vector component is zero. (Contributed by NM, 23-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhb1dim.l  |-  .<_  =  ( le `  K )
dvhb1dim.h  |-  H  =  ( LHyp `  K
)
dvhb1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhb1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dvhb1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhb1dim.o  |-  .0.  =  ( h  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvhb1dimN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  e.  ( T  X.  E
)  |  E. s  e.  E  g  =  <. ( s `  F
) ,  .0.  >. }  =  { g  e.  ( T  X.  E
)  |  ( ( R `  ( 1st `  g ) )  .<_  ( R `  F )  /\  ( 2nd `  g
)  =  .0.  ) } )
Distinct variable groups:    .<_ , s    E, s    g, s, F    g, H, s    g, K, s    .0. , s    R, s    g, h, T, s    g, W, s
Allowed substitution hints:    B( g, h, s)    R( g, h)    E( g, h)    F( h)    H( h)    K( h)    .<_ ( g, h)    W( h)    .0. ( g, h)

Proof of Theorem dvhb1dimN
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eqop 7208 . . . . 5  |-  ( g  e.  ( T  X.  E )  ->  (
g  =  <. (
s `  F ) ,  .0.  >. 
<->  ( ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  ) ) )
21adantl 482 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  (
g  =  <. (
s `  F ) ,  .0.  >. 
<->  ( ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  ) ) )
32rexbidv 3052 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( E. s  e.  E  g  =  <. ( s `
 F ) ,  .0.  >. 
<->  E. s  e.  E  ( ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  ) ) )
4 r19.41v 3089 . . . 4  |-  ( E. s  e.  E  ( ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  )  <->  ( E. s  e.  E  ( 1st `  g )  =  ( s `  F
)  /\  ( 2nd `  g )  =  .0.  ) )
5 fvex 6201 . . . . . . . 8  |-  ( 1st `  g )  e.  _V
6 eqeq1 2626 . . . . . . . . 9  |-  ( f  =  ( 1st `  g
)  ->  ( f  =  ( s `  F )  <->  ( 1st `  g )  =  ( s `  F ) ) )
76rexbidv 3052 . . . . . . . 8  |-  ( f  =  ( 1st `  g
)  ->  ( E. s  e.  E  f  =  ( s `  F )  <->  E. s  e.  E  ( 1st `  g )  =  ( s `  F ) ) )
85, 7elab 3350 . . . . . . 7  |-  ( ( 1st `  g )  e.  { f  |  E. s  e.  E  f  =  ( s `  F ) }  <->  E. s  e.  E  ( 1st `  g )  =  ( s `  F ) )
9 dvhb1dim.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
10 dvhb1dim.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
11 dvhb1dim.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
12 dvhb1dim.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
13 dvhb1dim.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
149, 10, 11, 12, 13dva1dim 36273 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { f  |  E. s  e.  E  f  =  ( s `  F ) }  =  { f  e.  T  |  ( R `  f )  .<_  ( R `
 F ) } )
1514adantr 481 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  { f  |  E. s  e.  E  f  =  ( s `  F ) }  =  { f  e.  T  |  ( R `  f ) 
.<_  ( R `  F
) } )
1615eleq2d 2687 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  (
( 1st `  g
)  e.  { f  |  E. s  e.  E  f  =  ( s `  F ) }  <->  ( 1st `  g
)  e.  { f  e.  T  |  ( R `  f ) 
.<_  ( R `  F
) } ) )
178, 16syl5bbr 274 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( E. s  e.  E  ( 1st `  g )  =  ( s `  F )  <->  ( 1st `  g )  e.  {
f  e.  T  | 
( R `  f
)  .<_  ( R `  F ) } ) )
18 xp1st 7198 . . . . . . . 8  |-  ( g  e.  ( T  X.  E )  ->  ( 1st `  g )  e.  T )
1918adantl 482 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( 1st `  g )  e.  T )
20 fveq2 6191 . . . . . . . . 9  |-  ( f  =  ( 1st `  g
)  ->  ( R `  f )  =  ( R `  ( 1st `  g ) ) )
2120breq1d 4663 . . . . . . . 8  |-  ( f  =  ( 1st `  g
)  ->  ( ( R `  f )  .<_  ( R `  F
)  <->  ( R `  ( 1st `  g ) )  .<_  ( R `  F ) ) )
2221elrab3 3364 . . . . . . 7  |-  ( ( 1st `  g )  e.  T  ->  (
( 1st `  g
)  e.  { f  e.  T  |  ( R `  f ) 
.<_  ( R `  F
) }  <->  ( R `  ( 1st `  g
) )  .<_  ( R `
 F ) ) )
2319, 22syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  (
( 1st `  g
)  e.  { f  e.  T  |  ( R `  f ) 
.<_  ( R `  F
) }  <->  ( R `  ( 1st `  g
) )  .<_  ( R `
 F ) ) )
2417, 23bitrd 268 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( E. s  e.  E  ( 1st `  g )  =  ( s `  F )  <->  ( R `  ( 1st `  g
) )  .<_  ( R `
 F ) ) )
2524anbi1d 741 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  (
( E. s  e.  E  ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  )  <->  ( ( R `  ( 1st `  g ) )  .<_  ( R `  F )  /\  ( 2nd `  g
)  =  .0.  )
) )
264, 25syl5bb 272 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( E. s  e.  E  ( ( 1st `  g
)  =  ( s `
 F )  /\  ( 2nd `  g )  =  .0.  )  <->  ( ( R `  ( 1st `  g ) )  .<_  ( R `  F )  /\  ( 2nd `  g
)  =  .0.  )
) )
273, 26bitrd 268 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  g  e.  ( T  X.  E
) )  ->  ( E. s  e.  E  g  =  <. ( s `
 F ) ,  .0.  >. 
<->  ( ( R `  ( 1st `  g ) )  .<_  ( R `  F )  /\  ( 2nd `  g )  =  .0.  ) ) )
2827rabbidva 3188 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  e.  ( T  X.  E
)  |  E. s  e.  E  g  =  <. ( s `  F
) ,  .0.  >. }  =  { g  e.  ( T  X.  E
)  |  ( ( R `  ( 1st `  g ) )  .<_  ( R `  F )  /\  ( 2nd `  g
)  =  .0.  ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   lecple 15948   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator