Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   Unicode version

Theorem dvhopN 36405
Description: Decompose a  DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of  DVecA and the other from the one-dimensional vector subspace  E. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by  <. (  _I  |`  B ) ,  (  _I  |`  T )
>.,  U,  <. F ,  O >.. We swapped the order of vector sum (their juxtaposition i.e. composition) to show  <. F ,  O >. first. Note that  O and  (  _I  |`  T ) are the zero and one of the division ring  E, and  (  _I  |`  B ) is the zero of the translation group.  S is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b  |-  B  =  ( Base `  K
)
dvhop.h  |-  H  =  ( LHyp `  K
)
dvhop.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhop.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhop.p  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
dvhop.a  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
dvhop.s  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
dvhop.o  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvhopN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Distinct variable groups:    B, c    a, b, f, g, s, E    H, c    K, c    P, f, g    a, c, T, b, f, g, s    W, a, b, c
Allowed substitution hints:    A( f, g, s, a, b, c)    B( f, g, s, a, b)    P( s, a, b, c)    S( f, g, s, a, b, c)    U( f, g, s, a, b, c)    E( c)    F( f, g, s, a, b, c)    H( f, g, s, a, b)    K( f, g, s, a, b)    O( f, g, s, a, b, c)    W( f, g, s)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 796 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  U  e.  E )
2 dvhop.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 dvhop.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvhop.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4idltrn 35436 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
65adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  B )  e.  T )
7 dvhop.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
83, 4, 7tendoidcl 36057 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
98adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  T )  e.  E )
10 dvhop.s . . . . . 6  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
1110dvhopspN 36404 . . . . 5  |-  ( ( U  e.  E  /\  ( (  _I  |`  B )  e.  T  /\  (  _I  |`  T )  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
121, 6, 9, 11syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
132, 3, 7tendoid 36061 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1413adantrl 752 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
153, 4, 7tendo1mulr 36059 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  (  _I  |`  T ) )  =  U )
1615adantrl 752 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U  o.  (  _I  |`  T ) )  =  U )
1714, 16opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) ) >.  =  <. (  _I  |`  B ) ,  U >. )
1812, 17eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. (  _I  |`  B ) ,  U >. )
1918oveq2d 6666 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) )  =  (
<. F ,  O >. A
<. (  _I  |`  B ) ,  U >. )
)
20 simprl 794 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F  e.  T )
21 dvhop.o . . . . 5  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
222, 3, 4, 7, 21tendo0cl 36078 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2322adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  O  e.  E )
24 dvhop.a . . . 4  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
2524dvhopaddN 36403 . . 3  |-  ( ( ( F  e.  T  /\  O  e.  E
)  /\  ( (  _I  |`  B )  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
2620, 23, 6, 1, 25syl22anc 1327 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
272, 3, 4ltrn1o 35410 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
2827adantrr 753 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F : B -1-1-onto-> B )
29 f1of 6137 . . . 4  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
30 fcoi1 6078 . . . 4  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
3128, 29, 303syl 18 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
32 dvhop.p . . . . 5  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
332, 3, 4, 7, 21, 32tendo0pl 36079 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O P U )  =  U )
3433adantrl 752 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( O P U )  =  U )
3531, 34opeq12d 4410 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.  =  <. F ,  U >. )
3619, 26, 353eqtrrd 2661 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator