Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid Structured version   Visualization version   Unicode version

Theorem tendoid 36061
Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoid.b  |-  B  =  ( Base `  K
)
tendoid.h  |-  H  =  ( LHyp `  K
)
tendoid.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoid  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S `  (  _I  |`  B ) )  =  (  _I  |`  B ) )

Proof of Theorem tendoid
StepHypRef Expression
1 tendoid.b . . . . . . 7  |-  B  =  ( Base `  K
)
2 tendoid.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
3 eqid 2622 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
41, 2, 3idltrn 35436 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  ( ( LTrn `  K ) `  W
) )
54adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  (  _I  |`  B )  e.  ( ( LTrn `  K
) `  W )
)
6 eqid 2622 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
7 eqid 2622 . . . . . 6  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
8 tendoid.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
96, 2, 3, 7, 8tendotp 36049 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  (  _I  |`  B )  e.  ( ( LTrn `  K ) `  W
) )  ->  (
( ( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) ) ( le `  K ) ( ( ( trL `  K
) `  W ) `  (  _I  |`  B ) ) )
105, 9mpd3an3 1425 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) ) ( le `  K ) ( ( ( trL `  K
) `  W ) `  (  _I  |`  B ) ) )
11 eqid 2622 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
121, 11, 2, 7trlid0 35463 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( trL `  K ) `  W
) `  (  _I  |`  B ) )  =  ( 0. `  K
) )
1312adantr 481 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( trL `  K
) `  W ) `  (  _I  |`  B ) )  =  ( 0.
`  K ) )
1410, 13breqtrd 4679 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) ) ( le `  K ) ( 0.
`  K ) )
15 hlop 34649 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
1615ad2antrr 762 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  K  e.  OP )
172, 3, 8tendocl 36055 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  (  _I  |`  B )  e.  ( ( LTrn `  K ) `  W
) )  ->  ( S `  (  _I  |`  B ) )  e.  ( ( LTrn `  K
) `  W )
)
185, 17mpd3an3 1425 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S `  (  _I  |`  B ) )  e.  ( (
LTrn `  K ) `  W ) )
191, 2, 3, 7trlcl 35451 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  (  _I  |`  B ) )  e.  ( (
LTrn `  K ) `  W ) )  -> 
( ( ( trL `  K ) `  W
) `  ( S `  (  _I  |`  B ) ) )  e.  B
)
2018, 19syldan 487 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) )  e.  B )
211, 6, 11ople0 34474 . . . 4  |-  ( ( K  e.  OP  /\  ( ( ( trL `  K ) `  W
) `  ( S `  (  _I  |`  B ) ) )  e.  B
)  ->  ( (
( ( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) ) ( le `  K ) ( 0.
`  K )  <->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) )  =  ( 0.
`  K ) ) )
2216, 20, 21syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( ( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) ) ( le `  K ) ( 0.
`  K )  <->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) )  =  ( 0.
`  K ) ) )
2314, 22mpbid 222 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) )  =  ( 0.
`  K ) )
241, 11, 2, 3, 7trlid0b 35465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  (  _I  |`  B ) )  e.  ( (
LTrn `  K ) `  W ) )  -> 
( ( S `  (  _I  |`  B ) )  =  (  _I  |`  B )  <->  ( (
( trL `  K
) `  W ) `  ( S `  (  _I  |`  B ) ) )  =  ( 0.
`  K ) ) )
2518, 24syldan 487 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( ( S `  (  _I  |`  B ) )  =  (  _I  |`  B )  <-> 
( ( ( trL `  K ) `  W
) `  ( S `  (  _I  |`  B ) ) )  =  ( 0. `  K ) ) )
2623, 25mpbird 247 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    _I cid 5023    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   0.cp0 17037   OPcops 34459   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  tendoeq2  36062  tendo0mulr  36115  tendotr  36118  tendocnv  36310  dvhopN  36405  dihpN  36625
  Copyright terms: Public domain W3C validator