MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elina Structured version   Visualization version   Unicode version

Theorem elina 9509
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elina  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
Distinct variable group:    x, A

Proof of Theorem elina
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  Inacc  ->  A  e.  _V )
2 fvex 6201 . . . 4  |-  ( cf `  A )  e.  _V
3 eleq1 2689 . . . 4  |-  ( ( cf `  A )  =  A  ->  (
( cf `  A
)  e.  _V  <->  A  e.  _V ) )
42, 3mpbii 223 . . 3  |-  ( ( cf `  A )  =  A  ->  A  e.  _V )
543ad2ant2 1083 . 2  |-  ( ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A )  ->  A  e.  _V )
6 neeq1 2856 . . . 4  |-  ( y  =  A  ->  (
y  =/=  (/)  <->  A  =/=  (/) ) )
7 fveq2 6191 . . . . 5  |-  ( y  =  A  ->  ( cf `  y )  =  ( cf `  A
) )
8 eqeq12 2635 . . . . 5  |-  ( ( ( cf `  y
)  =  ( cf `  A )  /\  y  =  A )  ->  (
( cf `  y
)  =  y  <->  ( cf `  A )  =  A ) )
97, 8mpancom 703 . . . 4  |-  ( y  =  A  ->  (
( cf `  y
)  =  y  <->  ( cf `  A )  =  A ) )
10 breq2 4657 . . . . 5  |-  ( y  =  A  ->  ( ~P x  ~<  y  <->  ~P x  ~<  A ) )
1110raleqbi1dv 3146 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  y  ~P x  ~<  y  <->  A. x  e.  A  ~P x  ~<  A ) )
126, 9, 113anbi123d 1399 . . 3  |-  ( y  =  A  ->  (
( y  =/=  (/)  /\  ( cf `  y )  =  y  /\  A. x  e.  y  ~P x  ~<  y )  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) ) )
13 df-ina 9507 . . 3  |-  Inacc  =  {
y  |  ( y  =/=  (/)  /\  ( cf `  y )  =  y  /\  A. x  e.  y  ~P x  ~<  y ) }
1412, 13elab2g 3353 . 2  |-  ( A  e.  _V  ->  ( A  e.  Inacc  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) ) )
151, 5, 14pm5.21nii 368 1  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888    ~< csdm 7954   cfccf 8763   Inacccina 9505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ina 9507
This theorem is referenced by:  inawina  9512  omina  9513  gchina  9521  inar1  9597  inatsk  9600  tskcard  9603  tskuni  9605  gruina  9640  grur1  9642
  Copyright terms: Public domain W3C validator