MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   Unicode version

Theorem gchina 9521
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina  |-  (GCH  =  _V  ->  InaccW  =  Inacc )

Proof of Theorem gchina
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  ->  x  e.  InaccW )
2 idd 24 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  -> 
( x  =/=  (/)  ->  x  =/=  (/) ) )
3 idd 24 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  -> 
( ( cf `  x
)  =  x  -> 
( cf `  x
)  =  x ) )
4 pwfi 8261 . . . . . . . . . . . . 13  |-  ( y  e.  Fin  <->  ~P y  e.  Fin )
5 isfinite 8549 . . . . . . . . . . . . . 14  |-  ( ~P y  e.  Fin  <->  ~P y  ~<  om )
6 winainf 9516 . . . . . . . . . . . . . . . 16  |-  ( x  e.  InaccW  ->  om  C_  x
)
7 ssdomg 8001 . . . . . . . . . . . . . . . 16  |-  ( x  e.  InaccW  ->  ( om  C_  x  ->  om  ~<_  x ) )
86, 7mpd 15 . . . . . . . . . . . . . . 15  |-  ( x  e.  InaccW  ->  om  ~<_  x )
9 sdomdomtr 8093 . . . . . . . . . . . . . . . 16  |-  ( ( ~P y  ~<  om  /\  om  ~<_  x )  ->  ~P y  ~<  x )
109expcom 451 . . . . . . . . . . . . . . 15  |-  ( om  ~<_  x  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x ) )
118, 10syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  InaccW  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x )
)
125, 11syl5bi 232 . . . . . . . . . . . . 13  |-  ( x  e.  InaccW  ->  ( ~P y  e.  Fin  ->  ~P y  ~<  x
) )
134, 12syl5bi 232 . . . . . . . . . . . 12  |-  ( x  e.  InaccW  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1413ad3antlr 767 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1514a1dd 50 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x )
) )
16 vex 3203 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
17 simplll 798 . . . . . . . . . . . . . . 15  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> GCH  =  _V )
1816, 17syl5eleqr 2708 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
y  e. GCH )
19 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  -.  y  e.  Fin )
20 gchinf 9479 . . . . . . . . . . . . . 14  |-  ( ( y  e. GCH  /\  -.  y  e.  Fin )  ->  om  ~<_  y )
2118, 19, 20syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  om 
~<_  y )
22 vex 3203 . . . . . . . . . . . . . 14  |-  z  e. 
_V
2322, 17syl5eleqr 2708 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
z  e. GCH )
24 gchpwdom 9492 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  y  /\  y  e. GCH  /\  z  e. GCH )  ->  ( y  ~<  z  <->  ~P y  ~<_  z ) )
2521, 18, 23, 24syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  <->  ~P y  ~<_  z ) )
26 winacard 9514 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  InaccW  ->  ( card `  x )  =  x )
27 iscard 8801 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. z  e.  x  z  ~<  x ) )
2827simprbi 480 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  x )  =  x  ->  A. z  e.  x  z  ~<  x )
2926, 28syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  InaccW  ->  A. z  e.  x  z  ~<  x )
3029ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  ->  A. z  e.  x  z  ~<  x )
3130r19.21bi 2932 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  z  ~<  x )
32 domsdomtr 8095 . . . . . . . . . . . . . . 15  |-  ( ( ~P y  ~<_  z  /\  z  ~<  x )  ->  ~P y  ~<  x )
3332expcom 451 . . . . . . . . . . . . . 14  |-  ( z 
~<  x  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3431, 33syl 17 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x )
)
3534adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3625, 35sylbid 230 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  ->  ~P y  ~<  x
) )
3736expr 643 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( -.  y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x
) ) )
3815, 37pm2.61d 170 . . . . . . . . 9  |-  ( ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  ~<  z  ->  ~P y  ~<  x ) )
3938rexlimdva 3031 . . . . . . . 8  |-  ( ( (GCH  =  _V  /\  x  e.  InaccW )  /\  y  e.  x
)  ->  ( E. z  e.  x  y  ~<  z  ->  ~P y  ~<  x ) )
4039ralimdva 2962 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  -> 
( A. y  e.  x  E. z  e.  x  y  ~<  z  ->  A. y  e.  x  ~P y  ~<  x ) )
412, 3, 403anim123d 1406 . . . . . 6  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  -> 
( ( x  =/=  (/)  /\  ( cf `  x
)  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z )  ->  (
x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) ) )
42 elwina 9508 . . . . . 6  |-  ( x  e.  InaccW  <->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z
) )
43 elina 9509 . . . . . 6  |-  ( x  e.  Inacc 
<->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) )
4441, 42, 433imtr4g 285 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  -> 
( x  e.  InaccW  ->  x  e.  Inacc ) )
451, 44mpd 15 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  InaccW )  ->  x  e.  Inacc )
4645ex 450 . . 3  |-  (GCH  =  _V  ->  ( x  e. 
InaccW  ->  x  e. 
Inacc ) )
47 inawina 9512 . . 3  |-  ( x  e.  Inacc  ->  x  e.  InaccW )
4846, 47impbid1 215 . 2  |-  (GCH  =  _V  ->  ( x  e. 
InaccW  <->  x  e.  Inacc ) )
4948eqrdv 2620 1  |-  (GCH  =  _V  ->  InaccW  =  Inacc )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   Oncon0 5723   ` cfv 5888   omcom 7065    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761   cfccf 8763  GCHcgch 9442   InaccWcwina 9504   Inacccina 9505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-har 8463  df-wdom 8464  df-cnf 8559  df-card 8765  df-cf 8767  df-cda 8990  df-fin4 9109  df-gch 9443  df-wina 9506  df-ina 9507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator