HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0lnfn Structured version   Visualization version   Unicode version

Theorem 0lnfn 28844
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0lnfn  |-  ( ~H 
X.  { 0 } )  e.  LinFn

Proof of Theorem 0lnfn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10032 . . 3  |-  0  e.  CC
21fconst6 6095 . 2  |-  ( ~H 
X.  { 0 } ) : ~H --> CC
3 hvmulcl 27870 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
4 hvaddcl 27869 . . . . . . 7  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
53, 4sylan 488 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
6 c0ex 10034 . . . . . . 7  |-  0  e.  _V
76fvconst2 6469 . . . . . 6  |-  ( ( ( x  .h  y
)  +h  z )  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  ( ( x  .h  y )  +h  z
) )  =  0 )
85, 7syl 17 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  0 )
96fvconst2 6469 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  y )  =  0 )
109oveq2d 6666 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
x  x.  ( ( ~H  X.  { 0 } ) `  y
) )  =  ( x  x.  0 ) )
11 mul01 10215 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
1210, 11sylan9eqr 2678 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  x.  (
( ~H  X.  {
0 } ) `  y ) )  =  0 )
136fvconst2 6469 . . . . . . 7  |-  ( z  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  z )  =  0 )
1412, 13oveqan12d 6669 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) )  =  ( 0  +  0 ) )
15 00id 10211 . . . . . 6  |-  ( 0  +  0 )  =  0
1614, 15syl6eq 2672 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) )  =  0 )
178, 16eqtr4d 2659 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) ) )
18173impa 1259 . . 3  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ~H  X.  {
0 } ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  (
( ~H  X.  {
0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `
 z ) ) )
1918rgen3 2976 . 2  |-  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( ~H  X.  { 0 } ) `
 ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H  X.  { 0 } ) `
 y ) )  +  ( ( ~H 
X.  { 0 } ) `  z ) )
20 ellnfn 28742 . 2  |-  ( ( ~H  X.  { 0 } )  e.  LinFn  <->  (
( ~H  X.  {
0 } ) : ~H --> CC  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) ) ) )
212, 19, 20mpbir2an 955 1  |-  ( ~H 
X.  { 0 } )  e.  LinFn
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {csn 4177    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941   ~Hchil 27776    +h cva 27777    .h csm 27778   LinFnclf 27811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hfvmul 27862
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-lnfn 28707
This theorem is referenced by:  nmfn0  28846  lnfn0  28906  lnfnmul  28907  nmbdfnlb  28909  nmcfnex  28912  nmcfnlb  28913  lnfncon  28915  riesz4  28923  riesz1  28924
  Copyright terms: Public domain W3C validator