| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isghm | Structured version Visualization version Unicode version | ||
| Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| isghm.w |
|
| isghm.x |
|
| isghm.a |
|
| isghm.b |
|
| Ref | Expression |
|---|---|
| isghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm 17658 |
. . 3
| |
| 2 | 1 | elmpt2cl 6876 |
. 2
|
| 3 | fvex 6201 |
. . . . . . . 8
| |
| 4 | feq2 6027 |
. . . . . . . . 9
| |
| 5 | raleq 3138 |
. . . . . . . . . 10
| |
| 6 | 5 | raleqbi1dv 3146 |
. . . . . . . . 9
|
| 7 | 4, 6 | anbi12d 747 |
. . . . . . . 8
|
| 8 | 3, 7 | sbcie 3470 |
. . . . . . 7
|
| 9 | fveq2 6191 |
. . . . . . . . . 10
| |
| 10 | isghm.w |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . . 9
|
| 12 | 11 | feq2d 6031 |
. . . . . . . 8
|
| 13 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 14 | isghm.a |
. . . . . . . . . . . . . 14
| |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . . . . . . . 13
|
| 16 | 15 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 18 | 17 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 19 | 11, 18 | raleqbidv 3152 |
. . . . . . . . 9
|
| 20 | 11, 19 | raleqbidv 3152 |
. . . . . . . 8
|
| 21 | 12, 20 | anbi12d 747 |
. . . . . . 7
|
| 22 | 8, 21 | syl5bb 272 |
. . . . . 6
|
| 23 | 22 | abbidv 2741 |
. . . . 5
|
| 24 | fveq2 6191 |
. . . . . . . . 9
| |
| 25 | isghm.x |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl6eqr 2674 |
. . . . . . . 8
|
| 27 | 26 | feq3d 6032 |
. . . . . . 7
|
| 28 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 29 | isghm.b |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 31 | 30 | oveqd 6667 |
. . . . . . . . 9
|
| 32 | 31 | eqeq2d 2632 |
. . . . . . . 8
|
| 33 | 32 | 2ralbidv 2989 |
. . . . . . 7
|
| 34 | 27, 33 | anbi12d 747 |
. . . . . 6
|
| 35 | 34 | abbidv 2741 |
. . . . 5
|
| 36 | fvex 6201 |
. . . . . . . 8
| |
| 37 | 10, 36 | eqeltri 2697 |
. . . . . . 7
|
| 38 | fvex 6201 |
. . . . . . . 8
| |
| 39 | 25, 38 | eqeltri 2697 |
. . . . . . 7
|
| 40 | mapex 7863 |
. . . . . . 7
| |
| 41 | 37, 39, 40 | mp2an 708 |
. . . . . 6
|
| 42 | simpl 473 |
. . . . . . 7
| |
| 43 | 42 | ss2abi 3674 |
. . . . . 6
|
| 44 | 41, 43 | ssexi 4803 |
. . . . 5
|
| 45 | 23, 35, 1, 44 | ovmpt2 6796 |
. . . 4
|
| 46 | 45 | eleq2d 2687 |
. . 3
|
| 47 | fex 6490 |
. . . . . 6
| |
| 48 | 37, 47 | mpan2 707 |
. . . . 5
|
| 49 | 48 | adantr 481 |
. . . 4
|
| 50 | feq1 6026 |
. . . . 5
| |
| 51 | fveq1 6190 |
. . . . . . 7
| |
| 52 | fveq1 6190 |
. . . . . . . 8
| |
| 53 | fveq1 6190 |
. . . . . . . 8
| |
| 54 | 52, 53 | oveq12d 6668 |
. . . . . . 7
|
| 55 | 51, 54 | eqeq12d 2637 |
. . . . . 6
|
| 56 | 55 | 2ralbidv 2989 |
. . . . 5
|
| 57 | 50, 56 | anbi12d 747 |
. . . 4
|
| 58 | 49, 57 | elab3 3358 |
. . 3
|
| 59 | 46, 58 | syl6bb 276 |
. 2
|
| 60 | 2, 59 | biadan2 674 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-ghm 17658 |
| This theorem is referenced by: isghm3 17661 ghmgrp1 17662 ghmgrp2 17663 ghmf 17664 ghmlin 17665 isghmd 17669 idghm 17675 ghmf1o 17690 islmhm2 19038 expghm 19844 mulgghm2 19845 pi1xfr 22855 pi1coghm 22861 rhmopp 29819 isrnghm 41892 |
| Copyright terms: Public domain | W3C validator |