MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre2 Structured version   Visualization version   Unicode version

Theorem ptpjpre2 21383
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
ptbasfi.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
Assertion
Ref Expression
ptpjpre2  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  ( `' ( w  e.  X  |->  ( w `  I ) ) " U )  e.  B
)
Distinct variable groups:    B, n    w, g, x, y, n, I    z, g, A, n, w, x, y    U, g, n, w, x, y    g, F, n, w, x, y, z   
g, X, w, x, z    g, V, n, w, x, y, z
Allowed substitution hints:    B( x, y, z, w, g)    U( z)    I( z)    X( y, n)

Proof of Theorem ptpjpre2
StepHypRef Expression
1 ptbasfi.2 . . 3  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
21ptpjpre1 21374 . 2  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  ( `' ( w  e.  X  |->  ( w `  I ) ) " U )  =  X_ n  e.  A  if ( n  =  I ,  U ,  U. ( F `  n )
) )
3 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
4 simpll 790 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  A  e.  V )
5 snfi 8038 . . . 4  |-  { I }  e.  Fin
65a1i 11 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  { I }  e.  Fin )
7 simprr 796 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  U  e.  ( F `  I
) )
87ad2antrr 762 . . . . 5  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  /\  n  =  I )  ->  U  e.  ( F `  I
) )
9 simpr 477 . . . . . 6  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  /\  n  =  I )  ->  n  =  I )
109fveq2d 6195 . . . . 5  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  /\  n  =  I )  ->  ( F `  n )  =  ( F `  I ) )
118, 10eleqtrrd 2704 . . . 4  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  /\  n  =  I )  ->  U  e.  ( F `  n
) )
12 simplr 792 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  F : A --> Top )
1312ffvelrnda 6359 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  ->  ( F `  n )  e.  Top )
14 eqid 2622 . . . . . . 7  |-  U. ( F `  n )  =  U. ( F `  n )
1514topopn 20711 . . . . . 6  |-  ( ( F `  n )  e.  Top  ->  U. ( F `  n )  e.  ( F `  n
) )
1613, 15syl 17 . . . . 5  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  ->  U. ( F `  n )  e.  ( F `  n
) )
1716adantr 481 . . . 4  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  /\  -.  n  =  I )  ->  U. ( F `  n )  e.  ( F `  n
) )
1811, 17ifclda 4120 . . 3  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  A
)  ->  if (
n  =  I ,  U ,  U. ( F `  n )
)  e.  ( F `
 n ) )
19 eldifsni 4320 . . . . . 6  |-  ( n  e.  ( A  \  { I } )  ->  n  =/=  I
)
2019neneqd 2799 . . . . 5  |-  ( n  e.  ( A  \  { I } )  ->  -.  n  =  I )
2120adantl 482 . . . 4  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  ( A  \  { I } ) )  ->  -.  n  =  I
)
2221iffalsed 4097 . . 3  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
I  e.  A  /\  U  e.  ( F `  I ) ) )  /\  n  e.  ( A  \  { I } ) )  ->  if ( n  =  I ,  U ,  U. ( F `  n ) )  =  U. ( F `  n )
)
233, 4, 6, 18, 22elptr2 21377 . 2  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  X_ n  e.  A  if (
n  =  I ,  U ,  U. ( F `  n )
)  e.  B )
242, 23eqeltrd 2701 1  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( I  e.  A  /\  U  e.  ( F `  I )
) )  ->  ( `' ( w  e.  X  |->  ( w `  I ) ) " U )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    \ cdif 3571   ifcif 4086   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   X_cixp 7908   Fincfn 7955   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-ixp 7909  df-en 7956  df-fin 7959  df-top 20699
This theorem is referenced by:  ptbasfi  21384  ptpjcn  21414
  Copyright terms: Public domain W3C validator