MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Visualization version   Unicode version

Theorem fopwdom 8068
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
fopwdom  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )

Proof of Theorem fopwdom
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
2 dfdm4 5316 . . . . . . 7  |-  dom  F  =  ran  `' F
3 fof 6115 . . . . . . . 8  |-  ( F : A -onto-> B  ->  F : A --> B )
4 fdm 6051 . . . . . . . 8  |-  ( F : A --> B  ->  dom  F  =  A )
53, 4syl 17 . . . . . . 7  |-  ( F : A -onto-> B  ->  dom  F  =  A )
62, 5syl5eqr 2670 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  `' F  =  A
)
71, 6syl5sseq 3653 . . . . 5  |-  ( F : A -onto-> B  -> 
( `' F "
a )  C_  A
)
87adantl 482 . . . 4  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ( `' F " a )  C_  A
)
9 cnvexg 7112 . . . . . 6  |-  ( F  e.  V  ->  `' F  e.  _V )
109adantr 481 . . . . 5  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  `' F  e. 
_V )
11 imaexg 7103 . . . . 5  |-  ( `' F  e.  _V  ->  ( `' F " a )  e.  _V )
12 elpwg 4166 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
1310, 11, 123syl 18 . . . 4  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
148, 13mpbird 247 . . 3  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ( `' F " a )  e.  ~P A )
1514a1d 25 . 2  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ( a  e. 
~P B  ->  ( `' F " a )  e.  ~P A ) )
16 imaeq2 5462 . . . . . . 7  |-  ( ( `' F " a )  =  ( `' F " b )  ->  ( F " ( `' F " a ) )  =  ( F " ( `' F " b ) ) )
1716adantl 482 . . . . . 6  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  ( F
" ( `' F " b ) ) )
18 simpllr 799 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  ->  F : A -onto-> B )
19 simplrl 800 . . . . . . . 8  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  e.  ~P B
)
2019elpwid 4170 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  C_  B )
21 foimacnv 6154 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
2218, 20, 21syl2anc 693 . . . . . 6  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  a )
23 simplrr 801 . . . . . . . 8  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  e.  ~P B
)
2423elpwid 4170 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  C_  B )
25 foimacnv 6154 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  b  C_  B )  ->  ( F "
( `' F "
b ) )  =  b )
2618, 24, 25syl2anc 693 . . . . . 6  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " b ) )  =  b )
2717, 22, 263eqtr3d 2664 . . . . 5  |-  ( ( ( ( F  e.  V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  =  b )
2827ex 450 . . . 4  |-  ( ( ( F  e.  V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  ->  a  =  b ) )
29 imaeq2 5462 . . . 4  |-  ( a  =  b  ->  ( `' F " a )  =  ( `' F " b ) )
3028, 29impbid1 215 . . 3  |-  ( ( ( F  e.  V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) )
3130ex 450 . 2  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ( ( a  e.  ~P B  /\  b  e.  ~P B
)  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) ) )
32 rnexg 7098 . . . . 5  |-  ( F  e.  V  ->  ran  F  e.  _V )
33 forn 6118 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
3433eleq1d 2686 . . . . 5  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
3532, 34syl5ibcom 235 . . . 4  |-  ( F  e.  V  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
3635imp 445 . . 3  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  B  e.  _V )
37 pwexg 4850 . . 3  |-  ( B  e.  _V  ->  ~P B  e.  _V )
3836, 37syl 17 . 2  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ~P B  e. 
_V )
39 dmfex 7124 . . . 4  |-  ( ( F  e.  V  /\  F : A --> B )  ->  A  e.  _V )
403, 39sylan2 491 . . 3  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  A  e.  _V )
41 pwexg 4850 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
4240, 41syl 17 . 2  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ~P A  e. 
_V )
4315, 31, 38, 42dom3d 7997 1  |-  ( ( F  e.  V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   -onto->wfo 5886    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-fv 5896  df-dom 7957
This theorem is referenced by:  pwdom  8112  wdompwdom  8483
  Copyright terms: Public domain W3C validator