MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqinfd Structured version   Visualization version   Unicode version

Theorem eqinfd 8391
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infexd.1  |-  ( ph  ->  R  Or  A )
eqinfd.2  |-  ( ph  ->  C  e.  A )
eqinfd.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
eqinfd.4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
Assertion
Ref Expression
eqinfd  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Distinct variable groups:    y, A, z    y, B, z    y, R, z    y, C, z    ph, y
Allowed substitution hint:    ph( z)

Proof of Theorem eqinfd
StepHypRef Expression
1 eqinfd.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqinfd.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
32ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  B  -.  y R C )
4 eqinfd.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
54expr 643 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( C R y  ->  E. z  e.  B  z R
y ) )
65ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) )
7 infexd.1 . . 3  |-  ( ph  ->  R  Or  A )
87eqinf 8390 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R
y ) )  -> inf ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1427 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    Or wor 5034  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-iota 5851  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by:  infmin  8400  xrinf0  12168  infmremnf  12173  infmrp1  12174
  Copyright terms: Public domain W3C validator