Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   Unicode version

Theorem etransclem26 40477
Description: Every term in the sum of the  N-th derivative of  F applied to  J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p  |-  ( ph  ->  P  e.  NN )
etransclem26.m  |-  ( ph  ->  M  e.  NN0 )
etransclem26.n  |-  ( ph  ->  N  e.  NN0 )
etransclem26.jz  |-  ( ph  ->  J  e.  ZZ )
etransclem26.c  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
etransclem26.d  |-  ( ph  ->  D  e.  ( C `
 N ) )
Assertion
Ref Expression
etransclem26  |-  ( ph  ->  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( D `
 j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( D `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( D ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( D `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( D `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( D `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( D `  j ) ) ) ) ) ) )  e.  ZZ )
Distinct variable groups:    D, c,
j    M, c, j, n    N, c, n    ph, j, n
Allowed substitution hints:    ph( c)    C( j, n, c)    D( n)    P( j, n, c)    J( j, n, c)    N( j)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( C `
 N ) )
2 etransclem26.c . . . . . . . . . . 11  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
3 etransclem26.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
42, 3etransclem12 40463 . . . . . . . . . 10  |-  ( ph  ->  ( C `  N
)  =  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } )
51, 4eleqtrd 2703 . . . . . . . . 9  |-  ( ph  ->  D  e.  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } )
6 fveq1 6190 . . . . . . . . . . . 12  |-  ( c  =  D  ->  (
c `  j )  =  ( D `  j ) )
76sumeq2ad 14434 . . . . . . . . . . 11  |-  ( c  =  D  ->  sum_ j  e.  ( 0 ... M
) ( c `  j )  =  sum_ j  e.  ( 0 ... M ) ( D `  j ) )
87eqeq1d 2624 . . . . . . . . . 10  |-  ( c  =  D  ->  ( sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N  <->  sum_ j  e.  ( 0 ... M
) ( D `  j )  =  N ) )
98elrab 3363 . . . . . . . . 9  |-  ( D  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  <->  ( D  e.  ( ( 0 ... N )  ^m  ( 0 ... M ) )  /\  sum_ j  e.  ( 0 ... M ) ( D `  j )  =  N ) )
105, 9sylib 208 . . . . . . . 8  |-  ( ph  ->  ( D  e.  ( ( 0 ... N
)  ^m  ( 0 ... M ) )  /\  sum_ j  e.  ( 0 ... M ) ( D `  j
)  =  N ) )
1110simprd 479 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( 0 ... M ) ( D `  j
)  =  N )
1211eqcomd 2628 . . . . . 6  |-  ( ph  ->  N  =  sum_ j  e.  ( 0 ... M
) ( D `  j ) )
1312fveq2d 6195 . . . . 5  |-  ( ph  ->  ( ! `  N
)  =  ( ! `
 sum_ j  e.  ( 0 ... M ) ( D `  j
) ) )
1413oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( D `  j ) ) )  =  ( ( ! `
 sum_ j  e.  ( 0 ... M ) ( D `  j
) )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( D `  j ) ) ) )
15 nfcv 2764 . . . . 5  |-  F/_ j D
16 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
17 nn0ex 11298 . . . . . . 7  |-  NN0  e.  _V
18 fzssnn0 39533 . . . . . . 7  |-  ( 0 ... N )  C_  NN0
19 mapss 7900 . . . . . . 7  |-  ( ( NN0  e.  _V  /\  ( 0 ... N
)  C_  NN0 )  -> 
( ( 0 ... N )  ^m  (
0 ... M ) ) 
C_  ( NN0  ^m  ( 0 ... M
) ) )
2017, 18, 19mp2an 708 . . . . . 6  |-  ( ( 0 ... N )  ^m  ( 0 ... M ) )  C_  ( NN0  ^m  ( 0 ... M ) )
2110simpld 475 . . . . . 6  |-  ( ph  ->  D  e.  ( ( 0 ... N )  ^m  ( 0 ... M ) ) )
2220, 21sseldi 3601 . . . . 5  |-  ( ph  ->  D  e.  ( NN0 
^m  ( 0 ... M ) ) )
2315, 16, 22mccl 39830 . . . 4  |-  ( ph  ->  ( ( ! `  sum_ j  e.  ( 0 ... M ) ( D `  j ) )  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( D `  j ) ) )  e.  NN )
2414, 23eqeltrd 2701 . . 3  |-  ( ph  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( D `  j ) ) )  e.  NN )
2524nnzd 11481 . 2  |-  ( ph  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( D `  j ) ) )  e.  ZZ )
26 etransclem26.p . . . 4  |-  ( ph  ->  P  e.  NN )
27 etransclem26.m . . . 4  |-  ( ph  ->  M  e.  NN0 )
28 elmapi 7879 . . . . 5  |-  ( D  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  ->  D : ( 0 ... M ) --> ( 0 ... N ) )
2921, 28syl 17 . . . 4  |-  ( ph  ->  D : ( 0 ... M ) --> ( 0 ... N ) )
30 etransclem26.jz . . . 4  |-  ( ph  ->  J  e.  ZZ )
3126, 27, 29, 30etransclem10 40461 . . 3  |-  ( ph  ->  if ( ( P  -  1 )  < 
( D `  0
) ,  0 ,  ( ( ( ! `
 ( P  - 
1 ) )  / 
( ! `  (
( P  -  1 )  -  ( D `
 0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( D `  0 ) ) ) ) )  e.  ZZ )
32 fzfid 12772 . . . 4  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
3326adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  P  e.  NN )
3429adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  D : ( 0 ... M ) --> ( 0 ... N ) )
35 0z 11388 . . . . . . . 8  |-  0  e.  ZZ
36 fzp1ss 12392 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... M ) 
C_  ( 0 ... M ) )
3735, 36ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... M )  C_  ( 0 ... M
)
38 1e0p1 11552 . . . . . . . . . 10  |-  1  =  ( 0  +  1 )
3938oveq1i 6660 . . . . . . . . 9  |-  ( 1 ... M )  =  ( ( 0  +  1 ) ... M
)
4039eleq2i 2693 . . . . . . . 8  |-  ( j  e.  ( 1 ... M )  <->  j  e.  ( ( 0  +  1 ) ... M
) )
4140biimpi 206 . . . . . . 7  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( ( 0  +  1 ) ... M
) )
4237, 41sseldi 3601 . . . . . 6  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( 0 ... M
) )
4342adantl 482 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  j  e.  ( 0 ... M
) )
4430adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  J  e.  ZZ )
4533, 34, 43, 44etransclem3 40454 . . . 4  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  if ( P  <  ( D `
 j ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( D `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( D `  j ) ) ) ) )  e.  ZZ )
4632, 45fprodzcl 14684 . . 3  |-  ( ph  ->  prod_ j  e.  ( 1 ... M ) if ( P  < 
( D `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( D `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( D `  j ) ) ) ) )  e.  ZZ )
4731, 46zmulcld 11488 . 2  |-  ( ph  ->  ( if ( ( P  -  1 )  <  ( D ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  ( D `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( D `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  ( D `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( D `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( D `  j ) ) ) ) ) )  e.  ZZ )
4825, 47zmulcld 11488 1  |-  ( ph  ->  ( ( ( ! `
 N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( D `
 j ) ) )  x.  ( if ( ( P  - 
1 )  <  ( D `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( D ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( D `  0 ) ) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( D `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( D `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( D `  j ) ) ) ) ) ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   !cfa 13060   sum_csu 14416   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636
This theorem is referenced by:  etransclem28  40479  etransclem36  40487  etransclem38  40489
  Copyright terms: Public domain W3C validator