Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   Unicode version

Theorem etransclem37 40488
Description:  ( P  -  1 ) factorial divides the  N-th derivative of  F applied to  J. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
etransclem37.x  |-  ( ph  ->  X  e.  ( (
TopOpen ` fld )t  S ) )
etransclem37.p  |-  ( ph  ->  P  e.  NN )
etransclem37.m  |-  ( ph  ->  M  e.  NN0 )
etransclem37.f  |-  F  =  ( x  e.  X  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem37.n  |-  ( ph  ->  N  e.  NN0 )
etransclem37.h  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
etransclem37.c  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
etransclem37.9  |-  ( ph  ->  J  e.  ( 0 ... M ) )
etransclem37.j  |-  ( ph  ->  J  e.  X )
Assertion
Ref Expression
etransclem37  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  ||  ( ( ( S  Dn
F ) `  N
) `  J )
)
Distinct variable groups:    C, c,
j, x    H, c,
j, n, x    J, c, j, x    M, c, j, n, x    N, c, j, n, x    P, c, j, x    S, c, j, n, x    j, X, n, x    ph, c,
j, n, x
Allowed substitution hints:    C( n)    P( n)    F( x, j, n, c)    J( n)    X( c)

Proof of Theorem etransclem37
Dummy variables  k  m  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
2 etransclem37.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
31, 2etransclem16 40467 . . 3  |-  ( ph  ->  ( C `  N
)  e.  Fin )
4 etransclem37.p . . . . . 6  |-  ( ph  ->  P  e.  NN )
5 nnm1nn0 11334 . . . . . 6  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
64, 5syl 17 . . . . 5  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
76faccld 13071 . . . 4  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  NN )
87nnzd 11481 . . 3  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  ZZ )
91, 2etransclem12 40463 . . . . . . . . . . . 12  |-  ( ph  ->  ( C `  N
)  =  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } )
109eleq2d 2687 . . . . . . . . . . 11  |-  ( ph  ->  ( c  e.  ( C `  N )  <-> 
c  e.  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } ) )
1110biimpa 501 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  c  e.  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M ) )  | 
sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }
)
12 rabid 3116 . . . . . . . . . . . 12  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  <->  ( c  e.  ( ( 0 ... N )  ^m  ( 0 ... M ) )  /\  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N ) )
1312biimpi 206 . . . . . . . . . . 11  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  ->  ( c  e.  ( ( 0 ... N
)  ^m  ( 0 ... M ) )  /\  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N ) )
1413simprd 479 . . . . . . . . . 10  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  -> 
sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N )
1511, 14syl 17 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  sum_ j  e.  ( 0 ... M
) ( c `  j )  =  N )
1615eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  N  =  sum_ j  e.  ( 0 ... M ) ( c `  j ) )
1716fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ! `  N )  =  ( ! `  sum_ j  e.  ( 0 ... M
) ( c `  j ) ) )
1817oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  (
c `  j )
) )  =  ( ( ! `  sum_ j  e.  ( 0 ... M ) ( c `  j ) )  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( c `  j
) ) ) )
19 nfcv 2764 . . . . . . 7  |-  F/_ j
c
20 fzfid 12772 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( 0 ... M )  e. 
Fin )
21 nn0ex 11298 . . . . . . . . . . 11  |-  NN0  e.  _V
2221a1i 11 . . . . . . . . . 10  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  ->  NN0  e.  _V )
23 fzssnn0 39533 . . . . . . . . . 10  |-  ( 0 ... N )  C_  NN0
24 mapss 7900 . . . . . . . . . 10  |-  ( ( NN0  e.  _V  /\  ( 0 ... N
)  C_  NN0 )  -> 
( ( 0 ... N )  ^m  (
0 ... M ) ) 
C_  ( NN0  ^m  ( 0 ... M
) ) )
2522, 23, 24sylancl 694 . . . . . . . . 9  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  ->  ( ( 0 ... N )  ^m  (
0 ... M ) ) 
C_  ( NN0  ^m  ( 0 ... M
) ) )
2613simpld 475 . . . . . . . . 9  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  ->  c  e.  ( ( 0 ... N )  ^m  ( 0 ... M ) ) )
2725, 26sseldd 3604 . . . . . . . 8  |-  ( c  e.  { c  e.  ( ( 0 ... N )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  ->  c  e.  ( NN0 
^m  ( 0 ... M ) ) )
2811, 27syl 17 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  c  e.  ( NN0  ^m  ( 0 ... M ) ) )
2919, 20, 28mccl 39830 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ( ! `  sum_ j  e.  ( 0 ... M
) ( c `  j ) )  /  prod_ j  e.  ( 0 ... M ) ( ! `  ( c `
 j ) ) )  e.  NN )
3018, 29eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  (
c `  j )
) )  e.  NN )
3130nnzd 11481 . . . 4  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  (
c `  j )
) )  e.  ZZ )
324adantr 481 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  P  e.  NN )
33 etransclem37.m . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
3433adantr 481 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  M  e.  NN0 )
35 elmapi 7879 . . . . . . 7  |-  ( c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  ->  c : ( 0 ... M ) --> ( 0 ... N ) )
3611, 26, 353syl 18 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  c :
( 0 ... M
) --> ( 0 ... N ) )
37 etransclem37.9 . . . . . . . 8  |-  ( ph  ->  J  e.  ( 0 ... M ) )
3837elfzelzd 39530 . . . . . . 7  |-  ( ph  ->  J  e.  ZZ )
3938adantr 481 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  J  e.  ZZ )
4032, 34, 36, 39etransclem10 40461 . . . . 5  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  if (
( P  -  1 )  <  ( c `
 0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `
 ( ( P  -  1 )  -  ( c `  0
) ) ) )  x.  ( J ^
( ( P  - 
1 )  -  (
c `  0 )
) ) ) )  e.  ZZ )
41 fzfid 12772 . . . . . 6  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( 1 ... M )  e. 
Fin )
4232adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( C `  N
) )  /\  j  e.  ( 1 ... M
) )  ->  P  e.  NN )
4336adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( C `  N
) )  /\  j  e.  ( 1 ... M
) )  ->  c : ( 0 ... M ) --> ( 0 ... N ) )
44 0z 11388 . . . . . . . . . . 11  |-  0  e.  ZZ
45 fzp1ss 12392 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... M ) 
C_  ( 0 ... M ) )
4644, 45ax-mp 5 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... M )  C_  ( 0 ... M
)
4746sseli 3599 . . . . . . . . 9  |-  ( j  e.  ( ( 0  +  1 ) ... M )  ->  j  e.  ( 0 ... M
) )
48 1e0p1 11552 . . . . . . . . . 10  |-  1  =  ( 0  +  1 )
4948oveq1i 6660 . . . . . . . . 9  |-  ( 1 ... M )  =  ( ( 0  +  1 ) ... M
)
5047, 49eleq2s 2719 . . . . . . . 8  |-  ( j  e.  ( 1 ... M )  ->  j  e.  ( 0 ... M
) )
5150adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( C `  N
) )  /\  j  e.  ( 1 ... M
) )  ->  j  e.  ( 0 ... M
) )
5239adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( C `  N
) )  /\  j  e.  ( 1 ... M
) )  ->  J  e.  ZZ )
5342, 43, 51, 52etransclem3 40454 . . . . . 6  |-  ( ( ( ph  /\  c  e.  ( C `  N
) )  /\  j  e.  ( 1 ... M
) )  ->  if ( P  <  ( c `
 j ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( c `  j
) ) ) )  x.  ( ( J  -  j ) ^
( P  -  (
c `  j )
) ) ) )  e.  ZZ )
5441, 53fprodzcl 14684 . . . . 5  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  prod_ j  e.  ( 1 ... M
) if ( P  <  ( c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  j )
) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j ) ) ) ) )  e.  ZZ )
5540, 54zmulcld 11488 . . . 4  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( if ( ( P  - 
1 )  <  (
c `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( c ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( c `  0
) ) ) ) )  x.  prod_ j  e.  ( 1 ... M
) if ( P  <  ( c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  j )
) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j ) ) ) ) ) )  e.  ZZ )
5631, 55zmulcld 11488 . . 3  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( (
( ! `  N
)  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( c `  j
) ) )  x.  ( if ( ( P  -  1 )  <  ( c ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  (
c `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( c `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  (
c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( c `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j
) ) ) ) ) ) )  e.  ZZ )
572adantr 481 . . . 4  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  N  e.  NN0 )
58 etransclem11 40462 . . . . 5  |-  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  n } )  =  ( m  e. 
NN0  |->  { d  e.  ( ( 0 ... m )  ^m  (
0 ... M ) )  |  sum_ k  e.  ( 0 ... M ) ( d `  k
)  =  m }
)
591, 58eqtri 2644 . . . 4  |-  C  =  ( m  e.  NN0  |->  { d  e.  ( ( 0 ... m
)  ^m  ( 0 ... M ) )  |  sum_ k  e.  ( 0 ... M ) ( d `  k
)  =  m }
)
60 simpr 477 . . . 4  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  c  e.  ( C `  N ) )
6137adantr 481 . . . 4  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  J  e.  ( 0 ... M
) )
62 fveq2 6191 . . . . . . . 8  |-  ( j  =  k  ->  (
c `  j )  =  ( c `  k ) )
6362fveq2d 6195 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  ( c `  j ) )  =  ( ! `  (
c `  k )
) )
6463cbvprodv 14646 . . . . . 6  |-  prod_ j  e.  ( 0 ... M
) ( ! `  ( c `  j
) )  =  prod_ k  e.  ( 0 ... M ) ( ! `
 ( c `  k ) )
6564oveq2i 6661 . . . . 5  |-  ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  (
c `  j )
) )  =  ( ( ! `  N
)  /  prod_ k  e.  ( 0 ... M
) ( ! `  ( c `  k
) ) )
6662breq2d 4665 . . . . . . . 8  |-  ( j  =  k  ->  ( P  <  ( c `  j )  <->  P  <  ( c `  k ) ) )
6762oveq2d 6666 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( P  -  ( c `  j ) )  =  ( P  -  (
c `  k )
) )
6867fveq2d 6195 . . . . . . . . . 10  |-  ( j  =  k  ->  ( ! `  ( P  -  ( c `  j ) ) )  =  ( ! `  ( P  -  (
c `  k )
) ) )
6968oveq2d 6666 . . . . . . . . 9  |-  ( j  =  k  ->  (
( ! `  P
)  /  ( ! `
 ( P  -  ( c `  j
) ) ) )  =  ( ( ! `
 P )  / 
( ! `  ( P  -  ( c `  k ) ) ) ) )
70 oveq2 6658 . . . . . . . . . 10  |-  ( j  =  k  ->  ( J  -  j )  =  ( J  -  k ) )
7170, 67oveq12d 6668 . . . . . . . . 9  |-  ( j  =  k  ->  (
( J  -  j
) ^ ( P  -  ( c `  j ) ) )  =  ( ( J  -  k ) ^
( P  -  (
c `  k )
) ) )
7269, 71oveq12d 6668 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( ! `  P )  /  ( ! `  ( P  -  ( c `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j
) ) ) )  =  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  k )
) ) )  x.  ( ( J  -  k ) ^ ( P  -  ( c `  k ) ) ) ) )
7366, 72ifbieq2d 4111 . . . . . . 7  |-  ( j  =  k  ->  if ( P  <  ( c `
 j ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( c `  j
) ) ) )  x.  ( ( J  -  j ) ^
( P  -  (
c `  j )
) ) ) )  =  if ( P  <  ( c `  k ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  k )
) ) )  x.  ( ( J  -  k ) ^ ( P  -  ( c `  k ) ) ) ) ) )
7473cbvprodv 14646 . . . . . 6  |-  prod_ j  e.  ( 1 ... M
) if ( P  <  ( c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  j )
) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j ) ) ) ) )  =  prod_ k  e.  ( 1 ... M ) if ( P  <  ( c `
 k ) ,  0 ,  ( ( ( ! `  P
)  /  ( ! `
 ( P  -  ( c `  k
) ) ) )  x.  ( ( J  -  k ) ^
( P  -  (
c `  k )
) ) ) )
7574oveq2i 6661 . . . . 5  |-  ( if ( ( P  - 
1 )  <  (
c `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( c ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( c `  0
) ) ) ) )  x.  prod_ j  e.  ( 1 ... M
) if ( P  <  ( c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  j )
) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j ) ) ) ) ) )  =  ( if ( ( P  -  1 )  <  ( c ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  (
c `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( c `
 0 ) ) ) ) )  x. 
prod_ k  e.  (
1 ... M ) if ( P  <  (
c `  k ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( c `  k ) ) ) )  x.  ( ( J  -  k ) ^ ( P  -  ( c `  k
) ) ) ) ) )
7665, 75oveq12i 6662 . . . 4  |-  ( ( ( ! `  N
)  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( c `  j
) ) )  x.  ( if ( ( P  -  1 )  <  ( c ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  (
c `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( c `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  (
c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( c `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j
) ) ) ) ) ) )  =  ( ( ( ! `
 N )  /  prod_ k  e.  ( 0 ... M ) ( ! `  ( c `
 k ) ) )  x.  ( if ( ( P  - 
1 )  <  (
c `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( c ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( c `  0
) ) ) ) )  x.  prod_ k  e.  ( 1 ... M
) if ( P  <  ( c `  k ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  k )
) ) )  x.  ( ( J  -  k ) ^ ( P  -  ( c `  k ) ) ) ) ) ) )
7732, 34, 57, 59, 60, 61, 76etransclem28 40479 . . 3  |-  ( (
ph  /\  c  e.  ( C `  N ) )  ->  ( ! `  ( P  -  1 ) )  ||  (
( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `
 ( c `  j ) ) )  x.  ( if ( ( P  -  1 )  <  ( c `
 0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `
 ( ( P  -  1 )  -  ( c `  0
) ) ) )  x.  ( J ^
( ( P  - 
1 )  -  (
c `  0 )
) ) ) )  x.  prod_ j  e.  ( 1 ... M ) if ( P  < 
( c `  j
) ,  0 ,  ( ( ( ! `
 P )  / 
( ! `  ( P  -  ( c `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j
) ) ) ) ) ) ) )
783, 8, 56, 77fsumdvds 15030 . 2  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  ||  sum_ c  e.  ( C `  N
) ( ( ( ! `  N )  /  prod_ j  e.  ( 0 ... M ) ( ! `  (
c `  j )
) )  x.  ( if ( ( P  - 
1 )  <  (
c `  0 ) ,  0 ,  ( ( ( ! `  ( P  -  1
) )  /  ( ! `  ( ( P  -  1 )  -  ( c ` 
0 ) ) ) )  x.  ( J ^ ( ( P  -  1 )  -  ( c `  0
) ) ) ) )  x.  prod_ j  e.  ( 1 ... M
) if ( P  <  ( c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  (
c `  j )
) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j ) ) ) ) ) ) ) )
79 etransclem37.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
80 etransclem37.x . . 3  |-  ( ph  ->  X  e.  ( (
TopOpen ` fld )t  S ) )
81 etransclem37.f . . 3  |-  F  =  ( x  e.  X  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
82 etransclem37.h . . 3  |-  H  =  ( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
83 etransclem37.j . . 3  |-  ( ph  ->  J  e.  X )
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 40482 . 2  |-  ( ph  ->  ( ( ( S  Dn F ) `
 N ) `  J )  =  sum_ c  e.  ( C `  N ) ( ( ( ! `  N
)  /  prod_ j  e.  ( 0 ... M
) ( ! `  ( c `  j
) ) )  x.  ( if ( ( P  -  1 )  <  ( c ` 
0 ) ,  0 ,  ( ( ( ! `  ( P  -  1 ) )  /  ( ! `  ( ( P  - 
1 )  -  (
c `  0 )
) ) )  x.  ( J ^ (
( P  -  1 )  -  ( c `
 0 ) ) ) ) )  x. 
prod_ j  e.  (
1 ... M ) if ( P  <  (
c `  j ) ,  0 ,  ( ( ( ! `  P )  /  ( ! `  ( P  -  ( c `  j ) ) ) )  x.  ( ( J  -  j ) ^ ( P  -  ( c `  j
) ) ) ) ) ) ) )
8578, 84breqtrrd 4681 1  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  ||  ( ( ( S  Dn
F ) `  N
) `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   !cfa 13060   sum_csu 14416   prod_cprod 14635    || cdvds 14983   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746    Dncdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem44  40495  etransclem45  40496
  Copyright terms: Public domain W3C validator