Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem13 Structured version   Visualization version   Unicode version

Theorem etransclem13 40464
Description:  F applied to  Y. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem13.x  |-  ( ph  ->  X  C_  CC )
etransclem13.p  |-  ( ph  ->  P  e.  NN )
etransclem13.m  |-  ( ph  ->  M  e.  NN0 )
etransclem13.f  |-  F  =  ( x  e.  X  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem13.y  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
etransclem13  |-  ( ph  ->  ( F `  Y
)  =  prod_ j  e.  ( 0 ... M
) ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )
Distinct variable groups:    j, M, x    P, j, x    j, X, x    j, Y, x    ph, j, x
Allowed substitution hints:    F( x, j)

Proof of Theorem etransclem13
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 etransclem13.x . . 3  |-  ( ph  ->  X  C_  CC )
2 etransclem13.p . . 3  |-  ( ph  ->  P  e.  NN )
3 etransclem13.m . . 3  |-  ( ph  ->  M  e.  NN0 )
4 etransclem13.f . . 3  |-  F  =  ( x  e.  X  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
5 eqid 2622 . . 3  |-  ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )  =  ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
6 eqid 2622 . . 3  |-  ( x  e.  X  |->  prod_ j  e.  ( 0 ... M
) ( ( ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) ) `  j ) `  x
) )  =  ( x  e.  X  |->  prod_
j  e.  ( 0 ... M ) ( ( ( j  e.  ( 0 ... M
)  |->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j ) `  x ) )
71, 2, 3, 4, 5, 6etransclem4 40455 . 2  |-  ( ph  ->  F  =  ( x  e.  X  |->  prod_ j  e.  ( 0 ... M
) ( ( ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) ) `  j ) `  x
) ) )
8 simpr 477 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  j  e.  ( 0 ... M
) )
9 cnex 10017 . . . . . . . . 9  |-  CC  e.  _V
109ssex 4802 . . . . . . . 8  |-  ( X 
C_  CC  ->  X  e. 
_V )
11 mptexg 6484 . . . . . . . 8  |-  ( X  e.  _V  ->  (
y  e.  X  |->  ( ( y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  _V )
121, 10, 113syl 18 . . . . . . 7  |-  ( ph  ->  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e. 
_V )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  (
y  e.  X  |->  ( ( y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  e.  _V )
14 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  -  j )  =  ( y  -  j ) )
1514oveq1d 6665 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
1615cbvmptv 4750 . . . . . . . 8  |-  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )  =  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
1716mpteq2i 4741 . . . . . . 7  |-  ( j  e.  ( 0 ... M )  |->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )  =  ( j  e.  ( 0 ... M )  |->  ( y  e.  X  |->  ( ( y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
1817fvmpt2 6291 . . . . . 6  |-  ( ( j  e.  ( 0 ... M )  /\  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )  e. 
_V )  ->  (
( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j )  =  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
198, 13, 18syl2anc 693 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... M
) )  ->  (
( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j )  =  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
2019adantlr 751 . . . 4  |-  ( ( ( ph  /\  x  =  Y )  /\  j  e.  ( 0 ... M
) )  ->  (
( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j )  =  ( y  e.  X  |->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) )
21 simpr 477 . . . . . . . 8  |-  ( ( x  =  Y  /\  y  =  x )  ->  y  =  x )
22 simpl 473 . . . . . . . 8  |-  ( ( x  =  Y  /\  y  =  x )  ->  x  =  Y )
2321, 22eqtrd 2656 . . . . . . 7  |-  ( ( x  =  Y  /\  y  =  x )  ->  y  =  Y )
24 oveq1 6657 . . . . . . . 8  |-  ( y  =  Y  ->  (
y  -  j )  =  ( Y  -  j ) )
2524oveq1d 6665 . . . . . . 7  |-  ( y  =  Y  ->  (
( y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
2623, 25syl 17 . . . . . 6  |-  ( ( x  =  Y  /\  y  =  x )  ->  ( ( y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) )  =  ( ( Y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
2726adantll 750 . . . . 5  |-  ( ( ( ph  /\  x  =  Y )  /\  y  =  x )  ->  (
( y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
2827adantlr 751 . . . 4  |-  ( ( ( ( ph  /\  x  =  Y )  /\  j  e.  (
0 ... M ) )  /\  y  =  x )  ->  ( (
y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  =  ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )
29 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  =  Y )  ->  x  =  Y )
30 etransclem13.y . . . . . . 7  |-  ( ph  ->  Y  e.  X )
3130adantr 481 . . . . . 6  |-  ( (
ph  /\  x  =  Y )  ->  Y  e.  X )
3229, 31eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  =  Y )  ->  x  e.  X )
3332adantr 481 . . . 4  |-  ( ( ( ph  /\  x  =  Y )  /\  j  e.  ( 0 ... M
) )  ->  x  e.  X )
34 ovexd 6680 . . . 4  |-  ( ( ( ph  /\  x  =  Y )  /\  j  e.  ( 0 ... M
) )  ->  (
( Y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) )  e.  _V )
3520, 28, 33, 34fvmptd 6288 . . 3  |-  ( ( ( ph  /\  x  =  Y )  /\  j  e.  ( 0 ... M
) )  ->  (
( ( j  e.  ( 0 ... M
)  |->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j ) `  x )  =  ( ( Y  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
3635prodeq2dv 14653 . 2  |-  ( (
ph  /\  x  =  Y )  ->  prod_ j  e.  ( 0 ... M ) ( ( ( j  e.  ( 0 ... M ) 
|->  ( x  e.  X  |->  ( ( x  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) ) ) `
 j ) `  x )  =  prod_ j  e.  ( 0 ... M ) ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) )
37 prodex 14637 . . 3  |-  prod_ j  e.  ( 0 ... M
) ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) )  e.  _V
3837a1i 11 . 2  |-  ( ph  ->  prod_ j  e.  ( 0 ... M ) ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) )  e.  _V )
397, 36, 30, 38fvmptd 6288 1  |-  ( ph  ->  ( F `  Y
)  =  prod_ j  e.  ( 0 ... M
) ( ( Y  -  j ) ^ if ( j  =  0 ,  ( P  - 
1 ) ,  P
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326   ^cexp 12860   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  etransclem18  40469  etransclem23  40474  etransclem46  40497
  Copyright terms: Public domain W3C validator