MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Visualization version   Unicode version

Theorem yonedalem3b 16919
Description: Lemma for yoneda 16923. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
yonedalem22.g  |-  ( ph  ->  G  e.  ( O 
Func  S ) )
yonedalem22.p  |-  ( ph  ->  P  e.  B )
yonedalem22.a  |-  ( ph  ->  A  e.  ( F ( O Nat  S ) G ) )
yonedalem22.k  |-  ( ph  ->  K  e.  ( P ( Hom  `  C
) X ) )
yonedalem3.m  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
Assertion
Ref Expression
yonedalem3b  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) ) )
Distinct variable groups:    f, a, x,  .1.    A, a    C, a, f, x    E, a, f    F, a, f, x    K, a    B, a, f, x    G, a, f, x    O, a, f, x    S, a, f, x    Q, a, f, x    T, f    P, a, f, x    ph, a,
f, x    Y, a,
f, x    Z, a,
f, x    X, a,
f, x
Allowed substitution hints:    A( x, f)    R( x, f, a)    T( x, a)    U( x, f, a)    E( x)    H( x, f, a)    K( x, f)    M( x, f, a)    V( x, f, a)    W( x, f, a)

Proof of Theorem yonedalem3b
Dummy variables  b 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . 8  |-  ( b  =  a  ->  ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b )  =  ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) )
21oveq1d 6665 . . . . . . 7  |-  ( b  =  a  ->  (
( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )
32fveq1d 6193 . . . . . 6  |-  ( b  =  a  ->  (
( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) )
43fveq1d 6193 . . . . 5  |-  ( b  =  a  ->  (
( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
54cbvmptv 4750 . . . 4  |-  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
6 yoneda.q . . . . . . . . 9  |-  Q  =  ( O FuncCat  S )
7 eqid 2622 . . . . . . . . 9  |-  ( O Nat 
S )  =  ( O Nat  S )
8 yoneda.o . . . . . . . . . 10  |-  O  =  (oppCat `  C )
9 yoneda.b . . . . . . . . . 10  |-  B  =  ( Base `  C
)
108, 9oppcbas 16378 . . . . . . . . 9  |-  B  =  ( Base `  O
)
11 eqid 2622 . . . . . . . . 9  |-  (comp `  S )  =  (comp `  S )
12 eqid 2622 . . . . . . . . 9  |-  (comp `  Q )  =  (comp `  Q )
13 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom  `  C )  =  ( Hom  `  C )
146, 7fuchom 16621 . . . . . . . . . . . 12  |-  ( O Nat 
S )  =  ( Hom  `  Q )
15 relfunc 16522 . . . . . . . . . . . . 13  |-  Rel  ( C  Func  Q )
16 yoneda.y . . . . . . . . . . . . . 14  |-  Y  =  (Yon `  C )
17 yoneda.c . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Cat )
18 yoneda.s . . . . . . . . . . . . . 14  |-  S  =  ( SetCat `  U )
19 yoneda.w . . . . . . . . . . . . . . 15  |-  ( ph  ->  V  e.  W )
20 yoneda.v . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ran  ( Hom f  `  Q )  u.  U
)  C_  V )
2120unssbd 3791 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  C_  V )
2219, 21ssexd 4805 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  _V )
23 yoneda.u . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2416, 17, 8, 18, 6, 22, 23yoncl 16902 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
25 1st2ndbr 7217 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
2615, 24, 25sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
27 yonedalem22.p . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  B )
28 yonedalem21.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
299, 13, 14, 26, 27, 28funcf2 16528 . . . . . . . . . . 11  |-  ( ph  ->  ( P ( 2nd `  Y ) X ) : ( P ( Hom  `  C ) X ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
30 yonedalem22.k . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ( P ( Hom  `  C
) X ) )
3129, 30ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ( 2nd `  Y ) X ) `  K
)  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
3231adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( P ( 2nd `  Y
) X ) `  K )  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) ( ( 1st `  Y
) `  X )
) )
33 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) )
34 yonedalem22.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ( F ( O Nat  S ) G ) )
3534adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  A  e.  ( F ( O Nat  S
) G ) )
366, 7, 12, 33, 35fuccocl 16624 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a )  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) G ) )
3727adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  P  e.  B
)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 16623 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
) ( <. (
( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) )
396, 7, 10, 11, 12, 33, 35, 37fuccoval 16623 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
)  =  ( ( A `  P ) ( <. ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( a `
 P ) ) )
4022adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  U  e.  _V )
41 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  S )  =  (
Base `  S )
42 relfunc 16522 . . . . . . . . . . . . . . . 16  |-  Rel  ( O  Func  S )
436fucbas 16620 . . . . . . . . . . . . . . . . . 18  |-  ( O 
Func  S )  =  (
Base `  Q )
449, 43, 26funcf1 16526 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1st `  Y
) : B --> ( O 
Func  S ) )
4544, 28ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1st `  Y
) `  X )  e.  ( O  Func  S
) )
46 1st2ndbr 7217 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 X )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  X
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  X )
) )
4742, 45, 46sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  X )
) )
4810, 41, 47funcf1 16526 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) : B --> ( Base `  S ) )
4918, 22setcbas 16728 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  =  ( Base `  S ) )
5049feq3d 6032 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) : B --> U  <->  ( 1st `  ( ( 1st `  Y
) `  X )
) : B --> ( Base `  S ) ) )
5148, 50mpbird 247 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  X )
) : B --> U )
5251, 27ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  e.  U )
5352adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )  e.  U )
54 yonedalem21.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
55 1st2ndbr 7217 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  F  e.  ( O  Func  S
) )  ->  ( 1st `  F ) ( O  Func  S )
( 2nd `  F
) )
5642, 54, 55sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  F
) ( O  Func  S ) ( 2nd `  F
) )
5710, 41, 56funcf1 16526 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  S ) )
5849feq3d 6032 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  F
) : B --> U  <->  ( 1st `  F ) : B --> ( Base `  S )
) )
5957, 58mpbird 247 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  F
) : B --> U )
6059, 27ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  F
) `  P )  e.  U )
6160adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  F ) `  P
)  e.  U )
62 yonedalem22.g . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  ( O 
Func  S ) )
63 1st2ndbr 7217 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( O  Func  S )  /\  G  e.  ( O  Func  S
) )  ->  ( 1st `  G ) ( O  Func  S )
( 2nd `  G
) )
6442, 62, 63sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  G
) ( O  Func  S ) ( 2nd `  G
) )
6510, 41, 64funcf1 16526 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  G
) : B --> ( Base `  S ) )
6665, 27ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  G
) `  P )  e.  ( Base `  S
) )
6766, 49eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1st `  G
) `  P )  e.  U )
6867adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  G ) `  P
)  e.  U )
697, 33nat1st2nd 16611 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  a  e.  (
<. ( 1st `  (
( 1st `  Y
) `  X )
) ,  ( 2nd `  ( ( 1st `  Y
) `  X )
) >. ( O Nat  S
) <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
)
70 eqid 2622 . . . . . . . . . . . . 13  |-  ( Hom  `  S )  =  ( Hom  `  S )
717, 69, 10, 70, 37natcl 16613 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  P )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
7218, 40, 70, 53, 61elsetchom 16731 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )
( Hom  `  S ) ( ( 1st `  F
) `  P )
)  <->  ( a `  P ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  F
) `  P )
) )
7371, 72mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  P ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  F
) `  P )
)
747, 34nat1st2nd 16611 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. ( O Nat  S ) <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
757, 74, 10, 70, 27natcl 16613 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A `  P
)  e.  ( ( ( 1st `  F
) `  P )
( Hom  `  S ) ( ( 1st `  G
) `  P )
) )
7618, 22, 70, 60, 67elsetchom 16731 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  P )  e.  ( ( ( 1st `  F
) `  P )
( Hom  `  S ) ( ( 1st `  G
) `  P )
)  <->  ( A `  P ) : ( ( 1st `  F
) `  P ) --> ( ( 1st `  G
) `  P )
) )
7775, 76mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )
)
7877adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( A `  P ) : ( ( 1st `  F
) `  P ) --> ( ( 1st `  G
) `  P )
)
7918, 40, 11, 53, 61, 68, 73, 78setcco 16733 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( a `
 P ) )  =  ( ( A `
 P )  o.  ( a `  P
) ) )
8039, 79eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) a ) `  P
)  =  ( ( A `  P )  o.  ( a `  P ) ) )
8180oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) `  P ) ( <. ( ( 1st `  ( ( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) )  =  ( ( ( A `  P )  o.  (
a `  P )
) ( <. (
( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) )
8244, 27ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  Y
) `  P )  e.  ( O  Func  S
) )
83 1st2ndbr 7217 . . . . . . . . . . . . . 14  |-  ( ( Rel  ( O  Func  S )  /\  ( ( 1st `  Y ) `
 P )  e.  ( O  Func  S
) )  ->  ( 1st `  ( ( 1st `  Y ) `  P
) ) ( O 
Func  S ) ( 2nd `  ( ( 1st `  Y
) `  P )
) )
8442, 82, 83sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  P )
) ( O  Func  S ) ( 2nd `  (
( 1st `  Y
) `  P )
) )
8510, 41, 84funcf1 16526 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  (
( 1st `  Y
) `  P )
) : B --> ( Base `  S ) )
8685, 27ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  e.  ( Base `  S
) )
8786, 49eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  e.  U )
8887adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  P )
) `  P )  e.  U )
897, 31nat1st2nd 16611 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ( 2nd `  Y ) X ) `  K
)  e.  ( <.
( 1st `  (
( 1st `  Y
) `  P )
) ,  ( 2nd `  ( ( 1st `  Y
) `  P )
) >. ( O Nat  S
) <. ( 1st `  (
( 1st `  Y
) `  X )
) ,  ( 2nd `  ( ( 1st `  Y
) `  X )
) >. ) )
907, 89, 10, 70, 27natcl 16613 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
9118, 22, 70, 87, 52elsetchom 16731 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  <->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
9290, 91mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
9392adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
94 fco 6058 . . . . . . . . . 10  |-  ( ( ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )  /\  ( a `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 P ) --> ( ( 1st `  F
) `  P )
)  ->  ( ( A `  P )  o.  ( a `  P
) ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  G
) `  P )
)
9578, 73, 94syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P )  o.  ( a `  P
) ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P ) --> ( ( 1st `  G
) `  P )
)
9618, 40, 11, 88, 53, 68, 93, 95setcco 16733 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) (
<. ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  G
) `  P )
) ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) )  =  ( ( ( A `  P )  o.  (
a `  P )
)  o.  ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) ) )
9738, 81, 963eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P )  =  ( ( ( A `
 P )  o.  ( a `  P
) )  o.  (
( ( P ( 2nd `  Y ) X ) `  K
) `  P )
) )
9897fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A `  P )  o.  (
a `  P )
)  o.  ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) ) `  (  .1.  `  P )
) )
99 yoneda.1 . . . . . . . . . 10  |-  .1.  =  ( Id `  C )
1009, 13, 99, 17, 27catidcl 16343 . . . . . . . . 9  |-  ( ph  ->  (  .1.  `  P
)  e.  ( P ( Hom  `  C
) P ) )
10116, 9, 17, 27, 13, 27yon11 16904 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )  =  ( P ( Hom  `  C ) P ) )
102100, 101eleqtrrd 2704 . . . . . . . 8  |-  ( ph  ->  (  .1.  `  P
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) )
103102adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  P )  e.  ( ( 1st `  (
( 1st `  Y
) `  P )
) `  P )
)
104 fvco3 6275 . . . . . . 7  |-  ( ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  /\  (  .1.  `  P
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 P ) ) `
 P ) )  ->  ( ( ( ( A `  P
)  o.  ( a `
 P ) )  o.  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) `  (  .1.  `  P ) )  =  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )
10593, 103, 104syl2anc 693 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A `  P
)  o.  ( a `
 P ) )  o.  ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) ) `  (  .1.  `  P ) )  =  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )
10693, 103ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  e.  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P )
)
107 fvco3 6275 . . . . . . . 8  |-  ( ( ( a `  P
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 P ) --> ( ( 1st `  F
) `  P )  /\  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) )  e.  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  ->  ( (
( A `  P
)  o.  ( a `
 P ) ) `
 ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) ) )  =  ( ( A `  P ) `
 ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) ) )
10873, 106, 107syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( A `
 P ) `  ( ( a `  P ) `  (
( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) ) )
10917adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  C  e.  Cat )
11028adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  X  e.  B
)
111 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
11230adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  K  e.  ( P ( Hom  `  C
) X ) )
113100adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  P )  e.  ( P ( Hom  `  C
) P ) )
11416, 9, 109, 37, 13, 110, 111, 37, 112, 113yon2 16906 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  =  ( K (
<. P ,  P >. (comp `  C ) X ) (  .1.  `  P
) ) )
1159, 13, 99, 109, 37, 111, 110, 112catrid 16345 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( K (
<. P ,  P >. (comp `  C ) X ) (  .1.  `  P
) )  =  K )
116114, 115eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( P ( 2nd `  Y ) X ) `
 K ) `  P ) `  (  .1.  `  P ) )  =  K )
117116fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( a `
 P ) `  K ) )
118 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Hom  `  O )  =  ( Hom  `  O )
11910, 118, 70, 47, 28, 27funcf2 16528 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ( 2nd `  ( ( 1st `  Y
) `  X )
) P ) : ( X ( Hom  `  O ) P ) --> ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
12013, 8oppchom 16375 . . . . . . . . . . . . . . 15  |-  ( X ( Hom  `  O
) P )  =  ( P ( Hom  `  C ) X )
12130, 120syl6eleqr 2712 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ( X ( Hom  `  O
) P ) )
122119, 121ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
)  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
12351, 28ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  e.  U )
12418, 22, 70, 123, 52elsetchom 16731 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)  <->  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
) )
125122, 124mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
126125adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )
)
1279, 13, 99, 17, 28catidcl 16343 . . . . . . . . . . . . 13  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X ( Hom  `  C
) X ) )
12816, 9, 17, 28, 13, 28yon11 16904 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )  =  ( X ( Hom  `  C ) X ) )
129127, 128eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ph  ->  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )
130129adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  X )  e.  ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
)
131 fvco3 6275 . . . . . . . . . . 11  |-  ( ( ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  (
( 1st `  Y
) `  X )
) `  P )  /\  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( a `  P ) `
 ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) ) )
132126, 130, 131syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( a `  P ) `
 ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) ) )
133121adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  K  e.  ( X ( Hom  `  O
) P ) )
1347, 69, 10, 118, 11, 110, 37, 133nati 16615 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  F
) `  P )
) ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) ( <.
( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  F ) `  X
) >. (comp `  S
) ( ( 1st `  F ) `  P
) ) ( a `
 X ) ) )
135123adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )  e.  U )
13618, 40, 11, 135, 53, 61, 126, 73setcco 16733 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) (
<. ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  P ) >. (comp `  S )
( ( 1st `  F
) `  P )
) ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) )  =  ( ( a `  P )  o.  (
( X ( 2nd `  ( ( 1st `  Y
) `  X )
) P ) `  K ) ) )
13759, 28ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  F
) `  X )  e.  U )
138137adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( 1st `  F ) `  X
)  e.  U )
1397, 69, 10, 70, 110natcl 16613 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X )  e.  ( ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
) )
14018, 40, 70, 135, 138elsetchom 16731 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 X )  e.  ( ( ( 1st `  ( ( 1st `  Y
) `  X )
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  X )
)  <->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
) )
141139, 140mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( a `  X ) : ( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) --> ( ( 1st `  F
) `  X )
)
14210, 118, 70, 56, 28, 27funcf2 16528 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( 2nd `  F ) P ) : ( X ( Hom  `  O ) P ) --> ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
143142, 121ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( X ( 2nd `  F ) P ) `  K
)  e.  ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
) )
14418, 22, 70, 137, 60elsetchom 16731 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( X ( 2nd `  F
) P ) `  K )  e.  ( ( ( 1st `  F
) `  X )
( Hom  `  S ) ( ( 1st `  F
) `  P )
)  <->  ( ( X ( 2nd `  F
) P ) `  K ) : ( ( 1st `  F
) `  X ) --> ( ( 1st `  F
) `  P )
) )
145143, 144mpbid 222 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X ( 2nd `  F ) P ) `  K
) : ( ( 1st `  F ) `
 X ) --> ( ( 1st `  F
) `  P )
)
146145adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( X ( 2nd `  F
) P ) `  K ) : ( ( 1st `  F
) `  X ) --> ( ( 1st `  F
) `  P )
)
14718, 40, 11, 135, 138, 61, 141, 146setcco 16733 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  F
) P ) `  K ) ( <.
( ( 1st `  (
( 1st `  Y
) `  X )
) `  X ) ,  ( ( 1st `  F ) `  X
) >. (comp `  S
) ( ( 1st `  F ) `  P
) ) ( a `
 X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K )  o.  (
a `  X )
) )
148134, 136, 1473eqtr3d 2664 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P )  o.  ( ( X ( 2nd `  ( ( 1st `  Y ) `
 X ) ) P ) `  K
) )  =  ( ( ( X ( 2nd `  F ) P ) `  K
)  o.  ( a `
 X ) ) )
149148fveq1d 6193 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( a `  P )  o.  ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) ) `  (  .1.  `  X )
)  =  ( ( ( ( X ( 2nd `  F ) P ) `  K
)  o.  ( a `
 X ) ) `
 (  .1.  `  X ) ) )
150127adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  (  .1.  `  X )  e.  ( X ( Hom  `  C
) X ) )
15116, 9, 109, 110, 13, 110, 111, 37, 112, 150yon12 16905 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) )  =  ( (  .1.  `  X ) ( <. P ,  X >. (comp `  C ) X ) K ) )
1529, 13, 99, 109, 37, 111, 110, 112catlid 16344 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( (  .1.  `  X ) ( <. P ,  X >. (comp `  C ) X ) K )  =  K )
153151, 152eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) )  =  K )
154153fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( X ( 2nd `  (
( 1st `  Y
) `  X )
) P ) `  K ) `  (  .1.  `  X ) ) )  =  ( ( a `  P ) `
 K ) )
155132, 149, 1543eqtr3d 2664 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( a `
 P ) `  K ) )
156 fvco3 6275 . . . . . . . . . 10  |-  ( ( ( a `  X
) : ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) --> ( ( 1st `  F
) `  X )  /\  (  .1.  `  X
)  e.  ( ( 1st `  ( ( 1st `  Y ) `
 X ) ) `
 X ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
157141, 130, 156syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( X ( 2nd `  F ) P ) `
 K )  o.  ( a `  X
) ) `  (  .1.  `  X ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
158117, 155, 1573eqtr2d 2662 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( a `
 P ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) )
159158fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( A `
 P ) `  ( ( a `  P ) `  (
( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) ) )  =  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
160108, 159eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( A `  P )  o.  ( a `  P ) ) `  ( ( ( ( P ( 2nd `  Y
) X ) `  K ) `  P
) `  (  .1.  `  P ) ) )  =  ( ( A `
 P ) `  ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
16198, 105, 1603eqtrd 2660 . . . . 5  |-  ( (
ph  /\  a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F ) )  ->  ( ( ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
)  =  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) )
162161mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) a ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) ) )
1635, 162syl5eq 2668 . . 3  |-  ( ph  ->  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A `  P ) `
 ( ( ( X ( 2nd `  F
) P ) `  K ) `  (
( a `  X
) `  (  .1.  `  X ) ) ) ) ) )
164 eqid 2622 . . . . . . . . . . 11  |-  ( Q  X.c  O )  =  ( Q  X.c  O )
165164, 43, 10xpcbas 16818 . . . . . . . . . 10  |-  ( ( O  Func  S )  X.  B )  =  (
Base `  ( Q  X.c  O ) )
166 eqid 2622 . . . . . . . . . 10  |-  ( Hom  `  ( Q  X.c  O ) )  =  ( Hom  `  ( Q  X.c  O ) )
167 eqid 2622 . . . . . . . . . 10  |-  ( Hom  `  T )  =  ( Hom  `  T )
168 relfunc 16522 . . . . . . . . . . 11  |-  Rel  (
( Q  X.c  O ) 
Func  T )
169 yoneda.t . . . . . . . . . . . . 13  |-  T  =  ( SetCat `  V )
170 yoneda.h . . . . . . . . . . . . 13  |-  H  =  (HomF
`  Q )
171 yoneda.r . . . . . . . . . . . . 13  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
172 yoneda.e . . . . . . . . . . . . 13  |-  E  =  ( O evalF  S )
173 yoneda.z . . . . . . . . . . . . 13  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
17416, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20yonedalem1 16912 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  ( ( Q  X.c  O ) 
Func  T )  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
) )
175174simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( ( Q  X.c  O )  Func  T
) )
176 1st2ndbr 7217 . . . . . . . . . . 11  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  Z  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  Z ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
177168, 175, 176sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  Z
) )
178 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( F  e.  ( O 
Func  S )  /\  X  e.  B )  ->  <. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
17954, 28, 178syl2anc 693 . . . . . . . . . 10  |-  ( ph  -> 
<. F ,  X >.  e.  ( ( O  Func  S )  X.  B ) )
180 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( G  e.  ( O 
Func  S )  /\  P  e.  B )  ->  <. G ,  P >.  e.  ( ( O  Func  S )  X.  B ) )
18162, 27, 180syl2anc 693 . . . . . . . . . 10  |-  ( ph  -> 
<. G ,  P >.  e.  ( ( O  Func  S )  X.  B ) )
182165, 166, 167, 177, 179, 181funcf2 16528 . . . . . . . . 9  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) ) )
183164, 43, 10, 14, 118, 54, 28, 62, 27, 166xpchom2 16826 . . . . . . . . . . 11  |-  ( ph  ->  ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. )  =  ( ( F ( O Nat  S ) G )  X.  ( X ( Hom  `  O
) P ) ) )
184120xpeq2i 5136 . . . . . . . . . . 11  |-  ( ( F ( O Nat  S
) G )  X.  ( X ( Hom  `  O ) P ) )  =  ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) )
185183, 184syl6eq 2672 . . . . . . . . . 10  |-  ( ph  ->  ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. )  =  ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) )
186 df-ov 6653 . . . . . . . . . . . . 13  |-  ( F ( 1st `  Z
) X )  =  ( ( 1st `  Z
) `  <. F ,  X >. )
187 df-ov 6653 . . . . . . . . . . . . 13  |-  ( G ( 1st `  Z
) P )  =  ( ( 1st `  Z
) `  <. G ,  P >. )
188186, 187oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( F ( 1st `  Z
) X ) ( Hom  `  T )
( G ( 1st `  Z ) P ) )  =  ( ( ( 1st `  Z
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  Z ) `
 <. G ,  P >. ) )
189188eqcomi 2631 . . . . . . . . . . 11  |-  ( ( ( 1st `  Z
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  Z ) `
 <. G ,  P >. ) )  =  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) )
190189a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) )  =  ( ( F ( 1st `  Z ) X ) ( Hom  `  T ) ( G ( 1st `  Z
) P ) ) )
191185, 190feq23d 6040 . . . . . . . . 9  |-  ( ph  ->  ( ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  Z ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  Z
) `  <. G ,  P >. ) )  <->  ( <. F ,  X >. ( 2nd `  Z ) <. G ,  P >. ) : ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) --> ( ( F ( 1st `  Z ) X ) ( Hom  `  T ) ( G ( 1st `  Z
) P ) ) ) )
192182, 191mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) : ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) ) --> ( ( F ( 1st `  Z
) X ) ( Hom  `  T )
( G ( 1st `  Z ) P ) ) )
193192, 34, 30fovrnd 6806 . . . . . . 7  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) ) )
194 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
195165, 194, 177funcf1 16526 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  Z
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
196195, 54, 28fovrnd 6806 . . . . . . . . 9  |-  ( ph  ->  ( F ( 1st `  Z ) X )  e.  ( Base `  T
) )
197169, 19setcbas 16728 . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  T ) )
198196, 197eleqtrrd 2704 . . . . . . . 8  |-  ( ph  ->  ( F ( 1st `  Z ) X )  e.  V )
199195, 62, 27fovrnd 6806 . . . . . . . . 9  |-  ( ph  ->  ( G ( 1st `  Z ) P )  e.  ( Base `  T
) )
200199, 197eleqtrrd 2704 . . . . . . . 8  |-  ( ph  ->  ( G ( 1st `  Z ) P )  e.  V )
201169, 19, 167, 198, 200elsetchom 16731 . . . . . . 7  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  Z ) X ) ( Hom  `  T
) ( G ( 1st `  Z ) P ) )  <->  ( A
( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) : ( F ( 1st `  Z ) X ) --> ( G ( 1st `  Z ) P ) ) )
202193, 201mpbid 222 . . . . . 6  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) : ( F ( 1st `  Z
) X ) --> ( G ( 1st `  Z
) P ) )
20316, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 62, 27, 34, 30yonedalem22 16918 . . . . . . . 8  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  =  ( ( ( P ( 2nd `  Y ) X ) `  K
) ( <. (
( 1st `  Y
) `  X ) ,  F >. ( 2nd `  H
) <. ( ( 1st `  Y ) `  P
) ,  G >. ) A ) )
2048oppccat 16382 . . . . . . . . . . 11  |-  ( C  e.  Cat  ->  O  e.  Cat )
20517, 204syl 17 . . . . . . . . . 10  |-  ( ph  ->  O  e.  Cat )
20618setccat 16735 . . . . . . . . . . 11  |-  ( U  e.  _V  ->  S  e.  Cat )
20722, 206syl 17 . . . . . . . . . 10  |-  ( ph  ->  S  e.  Cat )
2086, 205, 207fuccat 16630 . . . . . . . . 9  |-  ( ph  ->  Q  e.  Cat )
209170, 208, 43, 14, 45, 54, 82, 62, 12, 31, 34hof2val 16896 . . . . . . . 8  |-  ( ph  ->  ( ( ( P ( 2nd `  Y
) X ) `  K ) ( <.
( ( 1st `  Y
) `  X ) ,  F >. ( 2nd `  H
) <. ( ( 1st `  Y ) `  P
) ,  G >. ) A )  =  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) )
210203, 209eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K )  =  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) )
21116, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28yonedalem21 16913 . . . . . . 7  |-  ( ph  ->  ( F ( 1st `  Z ) X )  =  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) )
21216, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27yonedalem21 16913 . . . . . . 7  |-  ( ph  ->  ( G ( 1st `  Z ) P )  =  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G ) )
213210, 211, 212feq123d 6034 . . . . . 6  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) : ( F ( 1st `  Z
) X ) --> ( G ( 1st `  Z
) P )  <->  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) ) )
214202, 213mpbid 222 . . . . 5  |-  ( ph  ->  ( b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) )
215 eqid 2622 . . . . . 6  |-  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )  =  ( b  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) )
216215fmpt 6381 . . . . 5  |-  ( A. b  e.  ( (
( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G )  <->  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A ( <.
( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) ) : ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) --> ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G ) )
217214, 216sylibr 224 . . . 4  |-  ( ph  ->  A. b  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( A ( <. (
( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G ) )
218 yonedalem3.m . . . . . 6  |-  M  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( a  e.  ( ( ( 1st `  Y
) `  x )
( O Nat  S ) f )  |->  ( ( a `  x ) `
 (  .1.  `  x ) ) ) )
21916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27, 218yonedalem3a 16914 . . . . 5  |-  ( ph  ->  ( ( G M P )  =  ( a  e.  ( ( ( 1st `  Y
) `  P )
( O Nat  S ) G )  |->  ( ( a `  P ) `
 (  .1.  `  P ) ) )  /\  ( G M P ) : ( G ( 1st `  Z
) P ) --> ( G ( 1st `  E
) P ) ) )
220219simpld 475 . . . 4  |-  ( ph  ->  ( G M P )  =  ( a  e.  ( ( ( 1st `  Y ) `
 P ) ( O Nat  S ) G )  |->  ( ( a `
 P ) `  (  .1.  `  P )
) ) )
221 fveq1 6190 . . . . 5  |-  ( a  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  ->  ( a `  P )  =  ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) )
222221fveq1d 6193 . . . 4  |-  ( a  =  ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) )  ->  ( ( a `
 P ) `  (  .1.  `  P )
)  =  ( ( ( ( A (
<. ( ( 1st `  Y
) `  X ) ,  F >. (comp `  Q
) G ) b ) ( <. (
( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) )
223217, 210, 220, 222fmptcof 6397 . . 3  |-  ( ph  ->  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) )  =  ( b  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( ( ( A ( <. ( ( 1st `  Y ) `  X
) ,  F >. (comp `  Q ) G ) b ) ( <.
( ( 1st `  Y
) `  P ) ,  ( ( 1st `  Y ) `  X
) >. (comp `  Q
) G ) ( ( P ( 2nd `  Y ) X ) `
 K ) ) `
 P ) `  (  .1.  `  P )
) ) )
224 eqid 2622 . . . . . . 7  |-  ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. )  =  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. )
225172, 205, 207, 10, 118, 11, 7, 54, 62, 28, 27, 224, 34, 121evlf2val 16859 . . . . . 6  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  =  ( ( A `  P
) ( <. (
( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( ( X ( 2nd `  F
) P ) `  K ) ) )
22618, 22, 11, 137, 60, 67, 145, 77setcco 16733 . . . . . 6  |-  ( ph  ->  ( ( A `  P ) ( <.
( ( 1st `  F
) `  X ) ,  ( ( 1st `  F ) `  P
) >. (comp `  S
) ( ( 1st `  G ) `  P
) ) ( ( X ( 2nd `  F
) P ) `  K ) )  =  ( ( A `  P )  o.  (
( X ( 2nd `  F ) P ) `
 K ) ) )
227225, 226eqtrd 2656 . . . . 5  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  =  ( ( A `  P
)  o.  ( ( X ( 2nd `  F
) P ) `  K ) ) )
228227coeq1d 5283 . . . 4  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) )  =  ( ( ( A `  P )  o.  ( ( X ( 2nd `  F
) P ) `  K ) )  o.  ( F M X ) ) )
22916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 218yonedalem3a 16914 . . . . . . . 8  |-  ( ph  ->  ( ( F M X )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )  /\  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) ) )
230229simprd 479 . . . . . . 7  |-  ( ph  ->  ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X ) )
231229simpld 475 . . . . . . . 8  |-  ( ph  ->  ( F M X )  =  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) ) )
232172, 205, 207, 10, 54, 28evlf1 16860 . . . . . . . 8  |-  ( ph  ->  ( F ( 1st `  E ) X )  =  ( ( 1st `  F ) `  X
) )
233231, 211, 232feq123d 6034 . . . . . . 7  |-  ( ph  ->  ( ( F M X ) : ( F ( 1st `  Z
) X ) --> ( F ( 1st `  E
) X )  <->  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( a `  X
) `  (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) ) )
234230, 233mpbid 222 . . . . . 6  |-  ( ph  ->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) )
235 eqid 2622 . . . . . . 7  |-  ( a  e.  ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F )  |->  ( ( a `
 X ) `  (  .1.  `  X )
) )  =  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) )
236235fmpt 6381 . . . . . 6  |-  ( A. a  e.  ( (
( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( a `  X ) `
 (  .1.  `  X ) )  e.  ( ( 1st `  F
) `  X )  <->  ( a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F )  |->  ( ( a `  X ) `
 (  .1.  `  X ) ) ) : ( ( ( 1st `  Y ) `
 X ) ( O Nat  S ) F ) --> ( ( 1st `  F ) `  X
) )
237234, 236sylibr 224 . . . . 5  |-  ( ph  ->  A. a  e.  ( ( ( 1st `  Y
) `  X )
( O Nat  S ) F ) ( ( a `  X ) `
 (  .1.  `  X ) )  e.  ( ( 1st `  F
) `  X )
)
238 fcompt 6400 . . . . . 6  |-  ( ( ( A `  P
) : ( ( 1st `  F ) `
 P ) --> ( ( 1st `  G
) `  P )  /\  ( ( X ( 2nd `  F ) P ) `  K
) : ( ( 1st `  F ) `
 X ) --> ( ( 1st `  F
) `  P )
)  ->  ( ( A `  P )  o.  ( ( X ( 2nd `  F ) P ) `  K
) )  =  ( y  e.  ( ( 1st `  F ) `
 X )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  y ) ) ) )
23977, 145, 238syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( A `  P )  o.  (
( X ( 2nd `  F ) P ) `
 K ) )  =  ( y  e.  ( ( 1st `  F
) `  X )  |->  ( ( A `  P ) `  (
( ( X ( 2nd `  F ) P ) `  K
) `  y )
) ) )
240 fveq2 6191 . . . . . 6  |-  ( y  =  ( ( a `
 X ) `  (  .1.  `  X )
)  ->  ( (
( X ( 2nd `  F ) P ) `
 K ) `  y )  =  ( ( ( X ( 2nd `  F ) P ) `  K
) `  ( (
a `  X ) `  (  .1.  `  X
) ) ) )
241240fveq2d 6195 . . . . 5  |-  ( y  =  ( ( a `
 X ) `  (  .1.  `  X )
)  ->  ( ( A `  P ) `  ( ( ( X ( 2nd `  F
) P ) `  K ) `  y
) )  =  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) )
242237, 231, 239, 241fmptcof 6397 . . . 4  |-  ( ph  ->  ( ( ( A `
 P )  o.  ( ( X ( 2nd `  F ) P ) `  K
) )  o.  ( F M X ) )  =  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) ) )
243228, 242eqtrd 2656 . . 3  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) )  =  ( a  e.  ( ( ( 1st `  Y ) `  X
) ( O Nat  S
) F )  |->  ( ( A `  P
) `  ( (
( X ( 2nd `  F ) P ) `
 K ) `  ( ( a `  X ) `  (  .1.  `  X ) ) ) ) ) )
244163, 223, 2433eqtr4d 2666 . 2  |-  ( ph  ->  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) )  =  ( ( A ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) K )  o.  ( F M X ) ) )
245 eqid 2622 . . 3  |-  (comp `  T )  =  (comp `  T )
246174simprd 479 . . . . . . 7  |-  ( ph  ->  E  e.  ( ( Q  X.c  O )  Func  T
) )
247 1st2ndbr 7217 . . . . . . 7  |-  ( ( Rel  ( ( Q  X.c  O )  Func  T
)  /\  E  e.  ( ( Q  X.c  O
)  Func  T )
)  ->  ( 1st `  E ) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
248168, 246, 247sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1st `  E
) ( ( Q  X.c  O )  Func  T
) ( 2nd `  E
) )
249165, 194, 248funcf1 16526 . . . . 5  |-  ( ph  ->  ( 1st `  E
) : ( ( O  Func  S )  X.  B ) --> ( Base `  T ) )
250249, 62, 27fovrnd 6806 . . . 4  |-  ( ph  ->  ( G ( 1st `  E ) P )  e.  ( Base `  T
) )
251250, 197eleqtrrd 2704 . . 3  |-  ( ph  ->  ( G ( 1st `  E ) P )  e.  V )
252219simprd 479 . . 3  |-  ( ph  ->  ( G M P ) : ( G ( 1st `  Z
) P ) --> ( G ( 1st `  E
) P ) )
253169, 19, 245, 198, 200, 251, 202, 252setcco 16733 . 2  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( G M P )  o.  ( A ( <. F ,  X >. ( 2nd `  Z
) <. G ,  P >. ) K ) ) )
254249, 54, 28fovrnd 6806 . . . 4  |-  ( ph  ->  ( F ( 1st `  E ) X )  e.  ( Base `  T
) )
255254, 197eleqtrrd 2704 . . 3  |-  ( ph  ->  ( F ( 1st `  E ) X )  e.  V )
256165, 166, 167, 248, 179, 181funcf2 16528 . . . . . 6  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) ) )
257 df-ov 6653 . . . . . . . . . 10  |-  ( F ( 1st `  E
) X )  =  ( ( 1st `  E
) `  <. F ,  X >. )
258 df-ov 6653 . . . . . . . . . 10  |-  ( G ( 1st `  E
) P )  =  ( ( 1st `  E
) `  <. G ,  P >. )
259257, 258oveq12i 6662 . . . . . . . . 9  |-  ( ( F ( 1st `  E
) X ) ( Hom  `  T )
( G ( 1st `  E ) P ) )  =  ( ( ( 1st `  E
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  E ) `
 <. G ,  P >. ) )
260259eqcomi 2631 . . . . . . . 8  |-  ( ( ( 1st `  E
) `  <. F ,  X >. ) ( Hom  `  T ) ( ( 1st `  E ) `
 <. G ,  P >. ) )  =  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) )
261260a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) )  =  ( ( F ( 1st `  E ) X ) ( Hom  `  T ) ( G ( 1st `  E
) P ) ) )
262185, 261feq23d 6040 . . . . . 6  |-  ( ph  ->  ( ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( <. F ,  X >. ( Hom  `  ( Q  X.c  O ) ) <. G ,  P >. ) --> ( ( ( 1st `  E ) `  <. F ,  X >. )
( Hom  `  T ) ( ( 1st `  E
) `  <. G ,  P >. ) )  <->  ( <. F ,  X >. ( 2nd `  E ) <. G ,  P >. ) : ( ( F ( O Nat  S ) G )  X.  ( P ( Hom  `  C
) X ) ) --> ( ( F ( 1st `  E ) X ) ( Hom  `  T ) ( G ( 1st `  E
) P ) ) ) )
263256, 262mpbid 222 . . . . 5  |-  ( ph  ->  ( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) : ( ( F ( O Nat  S
) G )  X.  ( P ( Hom  `  C ) X ) ) --> ( ( F ( 1st `  E
) X ) ( Hom  `  T )
( G ( 1st `  E ) P ) ) )
264263, 34, 30fovrnd 6806 . . . 4  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) ) )
265169, 19, 167, 255, 251elsetchom 16731 . . . 4  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  e.  ( ( F ( 1st `  E ) X ) ( Hom  `  T
) ( G ( 1st `  E ) P ) )  <->  ( A
( <. F ,  X >. ( 2nd `  E
) <. G ,  P >. ) K ) : ( F ( 1st `  E ) X ) --> ( G ( 1st `  E ) P ) ) )
266264, 265mpbid 222 . . 3  |-  ( ph  ->  ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) : ( F ( 1st `  E
) X ) --> ( G ( 1st `  E
) P ) )
267169, 19, 245, 198, 255, 251, 230, 266setcco 16733 . 2  |-  ( ph  ->  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) )  =  ( ( A ( <. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K )  o.  ( F M X ) ) )
268244, 253, 2673eqtr4d 2666 1  |-  ( ph  ->  ( ( G M P ) ( <.
( F ( 1st `  Z ) X ) ,  ( G ( 1st `  Z ) P ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( A ( <. F ,  X >. ( 2nd `  Z )
<. G ,  P >. ) K ) )  =  ( ( A (
<. F ,  X >. ( 2nd `  E )
<. G ,  P >. ) K ) ( <.
( F ( 1st `  Z ) X ) ,  ( F ( 1st `  E ) X ) >. (comp `  T ) ( G ( 1st `  E
) P ) ) ( F M X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167  tpos ctpos 7351   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327  oppCatcoppc 16371    Func cfunc 16514    o.func ccofu 16516   Nat cnat 16601   FuncCat cfuc 16602   SetCatcsetc 16725    X.c cxpc 16808    1stF c1stf 16809    2ndF c2ndf 16810   ⟨,⟩F cprf 16811   evalF cevlf 16849  HomFchof 16888  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-cofu 16520  df-nat 16603  df-fuc 16604  df-setc 16726  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-prf 16815  df-evlf 16853  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by:  yonedalem3  16920
  Copyright terms: Public domain W3C validator