Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Visualization version   Unicode version

Theorem mzpmfp 37310
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp  |-  (mzPoly `  I )  =  ran  ( I eval ℤring )

Proof of Theorem mzpmfp
Dummy variables  a 
b  x  y  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 19824 . . . . . 6  |-  ZZ  =  ( Base ` ring )
2 eqid 2622 . . . . . . . 8  |-  ( I eval ℤring )  =  ( I eval ℤring )
32, 1evlval 19524 . . . . . . 7  |-  ( I eval ℤring )  =  ( ( I evalSub ℤring ) `  ZZ )
43rneqi 5352 . . . . . 6  |-  ran  (
I eval ℤring )  =  ran  ( ( I evalSub ℤring ) `  ZZ )
5 simpl 473 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  I  e.  _V )
6 zringcrng 19820 . . . . . . 7  |-ring  e.  CRing
76a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->ring  e. 
CRing )
8 zringring 19821 . . . . . . . 8  |-ring  e.  Ring
91subrgid 18782 . . . . . . . 8  |-  (ring  e.  Ring  ->  ZZ  e.  (SubRing ` ring ) )
108, 9ax-mp 5 . . . . . . 7  |-  ZZ  e.  (SubRing ` ring )
1110a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ZZ  e.  (SubRing ` ring ) )
12 simpr 477 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  f  e.  ZZ )
131, 4, 5, 7, 11, 12mpfconst 19530 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
f } )  e. 
ran  ( I eval ℤring ) )
14 simpl 473 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  I  e.  _V )
156a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->ring  e. 
CRing )
1610a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ZZ  e.  (SubRing ` ring ) )
17 simpr 477 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  f  e.  I )
181, 4, 14, 15, 16, 17mpfproj 19531 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ( g  e.  ( ZZ  ^m  I ) 
|->  ( g `  f
) )  e.  ran  ( I eval ℤring ) )
19 simp2r 1088 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
f  e.  ran  (
I eval ℤring ) )
20 simp3r 1090 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
g  e.  ran  (
I eval ℤring ) )
21 zringplusg 19825 . . . . . . 7  |-  +  =  ( +g  ` ring )
224, 21mpfaddcl 19534 . . . . . 6  |-  ( ( f  e.  ran  (
I eval ℤring )  /\  g  e.  ran  ( I eval ℤring ) )  ->  (
f  oF  +  g )  e.  ran  ( I eval ℤring ) )
2319, 20, 22syl2anc 693 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
( f  oF  +  g )  e. 
ran  ( I eval ℤring ) )
24 zringmulr 19827 . . . . . . 7  |-  x.  =  ( .r ` ring )
254, 24mpfmulcl 19535 . . . . . 6  |-  ( ( f  e.  ran  (
I eval ℤring )  /\  g  e.  ran  ( I eval ℤring ) )  ->  (
f  oF  x.  g )  e.  ran  ( I eval ℤring ) )
2619, 20, 25syl2anc 693 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
( f  oF  x.  g )  e. 
ran  ( I eval ℤring ) )
27 eleq1 2689 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ f } )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( ( ZZ 
^m  I )  X. 
{ f } )  e.  ran  ( I eval ℤring )
) )
28 eleq1 2689 . . . . 5  |-  ( b  =  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  -> 
( b  e.  ran  ( I eval ℤring )  <->  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  e. 
ran  ( I eval ℤring ) ) )
29 eleq1 2689 . . . . 5  |-  ( b  =  f  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  f  e.  ran  (
I eval ℤring ) ) )
30 eleq1 2689 . . . . 5  |-  ( b  =  g  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  g  e.  ran  (
I eval ℤring ) ) )
31 eleq1 2689 . . . . 5  |-  ( b  =  ( f  oF  +  g )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( f  oF  +  g )  e.  ran  ( I eval ℤring )
) )
32 eleq1 2689 . . . . 5  |-  ( b  =  ( f  oF  x.  g )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( f  oF  x.  g )  e.  ran  ( I eval ℤring )
) )
33 eleq1 2689 . . . . 5  |-  ( b  =  a  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  a  e.  ran  (
I eval ℤring ) ) )
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 37309 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  (mzPoly `  I
) )  ->  a  e.  ran  ( I eval ℤring ) )
35 simprlr 803 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  ->  x  e.  (mzPoly `  I
) )
36 simprrr 805 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
y  e.  (mzPoly `  I ) )
37 mzpadd 37301 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  +  y
)  e.  (mzPoly `  I ) )
3835, 36, 37syl2anc 693 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
( x  oF  +  y )  e.  (mzPoly `  I )
)
39 mzpmul 37302 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  x.  y
)  e.  (mzPoly `  I ) )
4035, 36, 39syl2anc 693 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
( x  oF  x.  y )  e.  (mzPoly `  I )
)
41 eleq1 2689 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ x } )  ->  ( b  e.  (mzPoly `  I )  <->  ( ( ZZ  ^m  I
)  X.  { x } )  e.  (mzPoly `  I ) ) )
42 eleq1 2689 . . . . 5  |-  ( b  =  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  -> 
( b  e.  (mzPoly `  I )  <->  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  e.  (mzPoly `  I )
) )
43 eleq1 2689 . . . . 5  |-  ( b  =  x  ->  (
b  e.  (mzPoly `  I )  <->  x  e.  (mzPoly `  I ) ) )
44 eleq1 2689 . . . . 5  |-  ( b  =  y  ->  (
b  e.  (mzPoly `  I )  <->  y  e.  (mzPoly `  I ) ) )
45 eleq1 2689 . . . . 5  |-  ( b  =  ( x  oF  +  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  +  y )  e.  (mzPoly `  I ) ) )
46 eleq1 2689 . . . . 5  |-  ( b  =  ( x  oF  x.  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  x.  y )  e.  (mzPoly `  I ) ) )
47 eleq1 2689 . . . . 5  |-  ( b  =  a  ->  (
b  e.  (mzPoly `  I )  <->  a  e.  (mzPoly `  I ) ) )
48 mzpconst 37298 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
x } )  e.  (mzPoly `  I )
)
4948adantlr 751 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  x  e.  ZZ )  ->  (
( ZZ  ^m  I
)  X.  { x } )  e.  (mzPoly `  I ) )
50 mzpproj 37300 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  I )  ->  ( y  e.  ( ZZ  ^m  I ) 
|->  ( y `  x
) )  e.  (mzPoly `  I ) )
5150adantlr 751 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  x  e.  I )  ->  (
y  e.  ( ZZ 
^m  I )  |->  ( y `  x ) )  e.  (mzPoly `  I ) )
52 simpr 477 . . . . 5  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval ℤring )
)  ->  a  e.  ran  ( I eval ℤring ) )
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 19536 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval ℤring )
)  ->  a  e.  (mzPoly `  I ) )
5434, 53impbida 877 . . 3  |-  ( I  e.  _V  ->  (
a  e.  (mzPoly `  I )  <->  a  e.  ran  ( I eval ℤring ) ) )
5554eqrdv 2620 . 2  |-  ( I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval ℤring ) )
56 fvprc 6185 . . 3  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  (/) )
57 df-evl 19507 . . . . . . 7  |- eval  =  ( a  e.  _V , 
b  e.  _V  |->  ( ( a evalSub  b ) `
 ( Base `  b
) ) )
5857reldmmpt2 6771 . . . . . 6  |-  Rel  dom eval
5958ovprc1 6684 . . . . 5  |-  ( -.  I  e.  _V  ->  ( I eval ℤring
)  =  (/) )
6059rneqd 5353 . . . 4  |-  ( -.  I  e.  _V  ->  ran  ( I eval ℤring )  =  ran  (/) )
61 rn0 5377 . . . 4  |-  ran  (/)  =  (/)
6260, 61syl6eq 2672 . . 3  |-  ( -.  I  e.  _V  ->  ran  ( I eval ℤring )  =  (/) )
6356, 62eqtr4d 2659 . 2  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval ℤring ) )
6455, 63pm2.61i 176 1  |-  (mzPoly `  I )  =  ran  ( I eval ℤring )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857    + caddc 9939    x. cmul 9941   ZZcz 11377   Basecbs 15857   Ringcrg 18547   CRingccrg 18548  SubRingcsubrg 18776   evalSub ces 19504   eval cevl 19505  ℤringzring 19818  mzPolycmzp 37285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-evls 19506  df-evl 19507  df-cnfld 19747  df-zring 19819  df-mzpcl 37286  df-mzp 37287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator