MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksvbij Structured version   Visualization version   Unicode version

Theorem clwwlksvbij 26922
Description: There is a bijection between the set of closed walks of a fixed length starting at a fixed vertex represented by walks (as word) and the set of closed walks (as words) of a fixed length starting at a fixed vertex. The difference between these two representations is that in the first case the starting vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Assertion
Ref Expression
clwwlksvbij  |-  ( N  e.  NN  ->  E. f 
f : { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } )
Distinct variable groups:    w, G    w, N    f, G, w   
f, N    S, f, w

Proof of Theorem clwwlksvbij
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . . . 6  |-  ( N WWalksN  G )  e.  _V
21mptrabex 6488 . . . . 5  |-  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  e.  _V
32resex 5443 . . . 4  |-  ( ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } )  e. 
_V
4 eqid 2622 . . . . 5  |-  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  =  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )
5 eqid 2622 . . . . . 6  |-  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  =  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }
65, 4clwwlksf1o 26919 . . . . 5  |-  ( N  e.  NN  ->  (
w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) ) : {
x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) } -1-1-onto-> ( N ClWWalksN  G )
)
7 fveq1 6190 . . . . . . . 8  |-  ( y  =  ( w substr  <. 0 ,  N >. )  ->  (
y `  0 )  =  ( ( w substr  <. 0 ,  N >. ) `
 0 ) )
87eqeq1d 2624 . . . . . . 7  |-  ( y  =  ( w substr  <. 0 ,  N >. )  ->  (
( y `  0
)  =  S  <->  ( (
w substr  <. 0 ,  N >. ) `  0 )  =  S ) )
983ad2ant3 1084 . . . . . 6  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  /\  y  =  ( w substr  <.
0 ,  N >. ) )  ->  ( (
y `  0 )  =  S  <->  ( ( w substr  <. 0 ,  N >. ) `
 0 )  =  S ) )
10 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( lastS  `  x )  =  ( lastS  `  w ) )
11 fveq1 6190 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  (
x `  0 )  =  ( w ` 
0 ) )
1210, 11eqeq12d 2637 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
( lastS  `  x )  =  ( x `  0
)  <->  ( lastS  `  w )  =  ( w ` 
0 ) ) )
1312elrab 3363 . . . . . . . . . . 11  |-  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  <->  ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w ` 
0 ) ) )
14 eqid 2622 . . . . . . . . . . . . . 14  |-  (Vtx `  G )  =  (Vtx
`  G )
15 eqid 2622 . . . . . . . . . . . . . 14  |-  (Edg `  G )  =  (Edg
`  G )
1614, 15wwlknp 26734 . . . . . . . . . . . . 13  |-  ( w  e.  ( N WWalksN  G
)  ->  ( w  e. Word  (Vtx `  G )  /\  ( # `  w
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
17 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  /\  N  e.  NN )  ->  w  e. Word  (Vtx `  G )
)
18 nnz 11399 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  ZZ )
19 uzid 11702 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
20 peano2uz 11741 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  N
) )
22 elfz1end 12371 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  <->  N  e.  ( 1 ... N
) )
2322biimpi 206 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  ( 1 ... N
) )
24 fzss2 12381 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  +  1 )  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) ) )
2524sselda 3603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  +  1 )  e.  ( ZZ>= `  N )  /\  N  e.  ( 1 ... N
) )  ->  N  e.  ( 1 ... ( N  +  1 ) ) )
2621, 23, 25syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  ( 1 ... ( N  +  1 ) ) )
2726adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  /\  N  e.  NN )  ->  N  e.  ( 1 ... ( N  +  1 ) ) )
28 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  (
1 ... ( # `  w
) )  =  ( 1 ... ( N  +  1 ) ) )
2928eleq2d 2687 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  ( N  e.  ( 1 ... ( # `  w
) )  <->  N  e.  ( 1 ... ( N  +  1 ) ) ) )
3029adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  ->  ( N  e.  ( 1 ... ( # `  w
) )  <->  N  e.  ( 1 ... ( N  +  1 ) ) ) )
3130adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  /\  N  e.  NN )  ->  ( N  e.  ( 1 ... ( # `  w
) )  <->  N  e.  ( 1 ... ( N  +  1 ) ) ) )
3227, 31mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  /\  N  e.  NN )  ->  N  e.  ( 1 ... ( # `
 w ) ) )
3317, 32jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  /\  N  e.  NN )  ->  (
w  e. Word  (Vtx `  G
)  /\  N  e.  ( 1 ... ( # `
 w ) ) ) )
3433ex 450 . . . . . . . . . . . . . 14  |-  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 ) )  ->  ( N  e.  NN  ->  ( w  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 w ) ) ) ) )
35343adant3 1081 . . . . . . . . . . . . 13  |-  ( ( w  e. Word  (Vtx `  G )  /\  ( # `
 w )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  -> 
( N  e.  NN  ->  ( w  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 w ) ) ) ) )
3616, 35syl 17 . . . . . . . . . . . 12  |-  ( w  e.  ( N WWalksN  G
)  ->  ( N  e.  NN  ->  ( w  e. Word  (Vtx `  G )  /\  N  e.  (
1 ... ( # `  w
) ) ) ) )
3736adantr 481 . . . . . . . . . . 11  |-  ( ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  ->  ( N  e.  NN  ->  ( w  e. Word  (Vtx `  G )  /\  N  e.  (
1 ... ( # `  w
) ) ) ) )
3813, 37sylbi 207 . . . . . . . . . 10  |-  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  ->  ( N  e.  NN  ->  ( w  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 w ) ) ) ) )
3938impcom 446 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) } )  ->  ( w  e. Word 
(Vtx `  G )  /\  N  e.  (
1 ... ( # `  w
) ) ) )
40 swrd0fv0 13440 . . . . . . . . 9  |-  ( ( w  e. Word  (Vtx `  G )  /\  N  e.  ( 1 ... ( # `
 w ) ) )  ->  ( (
w substr  <. 0 ,  N >. ) `  0 )  =  ( w ` 
0 ) )
4139, 40syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) } )  ->  ( ( w substr  <. 0 ,  N >. ) `
 0 )  =  ( w `  0
) )
4241eqeq1d 2624 . . . . . . 7  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) } )  ->  ( ( ( w substr  <. 0 ,  N >. ) `  0 )  =  S  <->  ( w `  0 )  =  S ) )
43423adant3 1081 . . . . . 6  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  /\  y  =  ( w substr  <.
0 ,  N >. ) )  ->  ( (
( w substr  <. 0 ,  N >. ) `  0
)  =  S  <->  ( w `  0 )  =  S ) )
449, 43bitrd 268 . . . . 5  |-  ( ( N  e.  NN  /\  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  /\  y  =  ( w substr  <.
0 ,  N >. ) )  ->  ( (
y `  0 )  =  S  <->  ( w ` 
0 )  =  S ) )
454, 6, 44f1oresrab 6395 . . . 4  |-  ( N  e.  NN  ->  (
( w  e.  {
x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S }
) : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } )
46 f1oeq1 6127 . . . . 5  |-  ( f  =  ( ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } )  -> 
( f : {
w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S }  <->  ( (
w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } ) : { w  e.  {
x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } ) )
4746spcegv 3294 . . . 4  |-  ( ( ( w  e.  {
x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S }
)  e.  _V  ->  ( ( ( w  e. 
{ x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |->  ( w substr  <. 0 ,  N >. ) )  |`  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S }
) : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S }  ->  E. f  f : {
w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } ) )
483, 45, 47mpsyl 68 . . 3  |-  ( N  e.  NN  ->  E. f 
f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } )
49 fveq1 6190 . . . . . . 7  |-  ( w  =  y  ->  (
w `  0 )  =  ( y ` 
0 ) )
5049eqeq1d 2624 . . . . . 6  |-  ( w  =  y  ->  (
( w `  0
)  =  S  <->  ( y `  0 )  =  S ) )
5150cbvrabv 3199 . . . . 5  |-  { w  e.  ( N ClWWalksN  G )  |  ( w ` 
0 )  =  S }  =  { y  e.  ( N ClWWalksN  G )  |  ( y ` 
0 )  =  S }
52 f1oeq3 6129 . . . . 5  |-  ( { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  =  { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S }  ->  ( f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } ) )
5351, 52mp1i 13 . . . 4  |-  ( N  e.  NN  ->  (
f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } ) )
5453exbidv 1850 . . 3  |-  ( N  e.  NN  ->  ( E. f  f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  E. f 
f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { y  e.  ( N ClWWalksN  G )  |  ( y `  0 )  =  S } ) )
5548, 54mpbird 247 . 2  |-  ( N  e.  NN  ->  E. f 
f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } )
56 df-rab 2921 . . . . 5  |-  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) }  =  { w  |  ( w  e.  ( N WWalksN  G )  /\  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) ) }
57 anass 681 . . . . . . 7  |-  ( ( ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  /\  ( w `
 0 )  =  S )  <->  ( w  e.  ( N WWalksN  G )  /\  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) ) )
5857bicomi 214 . . . . . 6  |-  ( ( w  e.  ( N WWalksN  G )  /\  (
( lastS  `  w )  =  ( w `  0
)  /\  ( w `  0 )  =  S ) )  <->  ( (
w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  /\  ( w `
 0 )  =  S ) )
5958abbii 2739 . . . . 5  |-  { w  |  ( w  e.  ( N WWalksN  G )  /\  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) ) }  =  {
w  |  ( ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  /\  ( w `
 0 )  =  S ) }
6013bicomi 214 . . . . . . . 8  |-  ( ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  <->  w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) } )
6160anbi1i 731 . . . . . . 7  |-  ( ( ( w  e.  ( N WWalksN  G )  /\  ( lastS  `  w )  =  ( w `  0 ) )  /\  ( w `
 0 )  =  S )  <->  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  /\  ( w `
 0 )  =  S ) )
6261abbii 2739 . . . . . 6  |-  { w  |  ( ( w  e.  ( N WWalksN  G
)  /\  ( lastS  `  w
)  =  ( w `
 0 ) )  /\  ( w ` 
0 )  =  S ) }  =  {
w  |  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  /\  ( w `  0
)  =  S ) }
63 df-rab 2921 . . . . . 6  |-  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S }  =  {
w  |  ( w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  /\  ( w `  0
)  =  S ) }
6462, 63eqtr4i 2647 . . . . 5  |-  { w  |  ( ( w  e.  ( N WWalksN  G
)  /\  ( lastS  `  w
)  =  ( w `
 0 ) )  /\  ( w ` 
0 )  =  S ) }  =  {
w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S }
6556, 59, 643eqtri 2648 . . . 4  |-  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) }  =  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S }
66 f1oeq2 6128 . . . 4  |-  ( { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  S ) }  =  { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S }  ->  ( f : {
w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  S ) } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } ) )
6765, 66mp1i 13 . . 3  |-  ( N  e.  NN  ->  (
f : { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x ` 
0 ) }  | 
( w `  0
)  =  S } -1-1-onto-> {
w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } ) )
6867exbidv 1850 . 2  |-  ( N  e.  NN  ->  ( E. f  f : { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  S ) } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S }  <->  E. f 
f : { w  e.  { x  e.  ( N WWalksN  G )  |  ( lastS  `  x )  =  ( x `  0 ) }  |  ( w `
 0 )  =  S } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } ) )
6955, 68mpbird 247 1  |-  ( N  e.  NN  ->  E. f 
f : { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  S ) } -1-1-onto-> { w  e.  ( N ClWWalksN  G )  |  ( w `  0 )  =  S } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200   {cpr 4179   <.cop 4183    |-> cmpt 4729    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlkqhash  27233
  Copyright terms: Public domain W3C validator