MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlksnwwlknvbij Structured version   Visualization version   Unicode version

Theorem wlksnwwlknvbij 26803
Description: There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 20-Apr-2021.)
Assertion
Ref Expression
wlksnwwlknvbij  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  E. f  f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } )
Distinct variable groups:    f, G, p, w    f, N, p, w    f, X, p, w

Proof of Theorem wlksnwwlknvbij
Dummy variables  q 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . 5  |-  (Walks `  G )  e.  _V
21mptrabex 6488 . . . 4  |-  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  e.  _V
32resex 5443 . . 3  |-  ( ( p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |->  ( 2nd `  p
) )  |`  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } )  e. 
_V
4 eqid 2622 . . . 4  |-  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  =  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )
5 usgruspgr 26073 . . . . . 6  |-  ( G  e. USGraph  ->  G  e. USPGraph  )
6 fveq2 6191 . . . . . . . . . 10  |-  ( q  =  t  ->  ( 1st `  q )  =  ( 1st `  t
) )
76fveq2d 6195 . . . . . . . . 9  |-  ( q  =  t  ->  ( # `
 ( 1st `  q
) )  =  (
# `  ( 1st `  t ) ) )
87eqeq1d 2624 . . . . . . . 8  |-  ( q  =  t  ->  (
( # `  ( 1st `  q ) )  =  N  <->  ( # `  ( 1st `  t ) )  =  N ) )
98cbvrabv 3199 . . . . . . 7  |-  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  =  { t  e.  (Walks `  G
)  |  ( # `  ( 1st `  t
) )  =  N }
10 eqid 2622 . . . . . . 7  |-  ( N WWalksN  G )  =  ( N WWalksN  G )
11 fveq2 6191 . . . . . . . 8  |-  ( p  =  s  ->  ( 2nd `  p )  =  ( 2nd `  s
) )
1211cbvmptv 4750 . . . . . . 7  |-  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  =  ( s  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  s ) )
139, 10, 12wlknwwlksnbij 26777 . . . . . 6  |-  ( ( G  e. USPGraph  /\  N  e. 
NN0 )  ->  (
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |->  ( 2nd `  p
) ) : {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N } -1-1-onto-> ( N WWalksN  G )
)
145, 13sylan 488 . . . . 5  |-  ( ( G  e. USGraph  /\  N  e. 
NN0 )  ->  (
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |->  ( 2nd `  p
) ) : {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N } -1-1-onto-> ( N WWalksN  G )
)
15143adant3 1081 . . . 4  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  ( p  e. 
{ q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) ) : { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N } -1-1-onto-> ( N WWalksN  G )
)
16 fveq1 6190 . . . . . 6  |-  ( w  =  ( 2nd `  p
)  ->  ( w `  0 )  =  ( ( 2nd `  p
) `  0 )
)
1716eqeq1d 2624 . . . . 5  |-  ( w  =  ( 2nd `  p
)  ->  ( (
w `  0 )  =  X  <->  ( ( 2nd `  p ) `  0
)  =  X ) )
18173ad2ant3 1084 . . . 4  |-  ( ( ( G  e. USGraph  /\  N  e.  NN0  /\  X  e.  (Vtx `  G )
)  /\  p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  /\  w  =  ( 2nd `  p
) )  ->  (
( w `  0
)  =  X  <->  ( ( 2nd `  p ) ` 
0 )  =  X ) )
194, 15, 18f1oresrab 6395 . . 3  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  ( ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  |`  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } ) : { p  e.  {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } )
20 f1oeq1 6127 . . . 4  |-  ( f  =  ( ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  |`  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } )  -> 
( f : {
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  <->  ( (
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |->  ( 2nd `  p
) )  |`  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } ) : { p  e.  {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } ) )
2120spcegv 3294 . . 3  |-  ( ( ( p  e.  {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |->  ( 2nd `  p ) )  |`  { p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X } )  e. 
_V  ->  ( ( ( p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |->  ( 2nd `  p
) )  |`  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } ) : { p  e.  {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  ->  E. f  f : {
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } ) )
223, 19, 21mpsyl 68 . 2  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  E. f  f : { p  e.  {
q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } )
23 df-rab 2921 . . . . 5  |-  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  X ) }  =  { p  |  ( p  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) ) }
24 anass 681 . . . . . . 7  |-  ( ( ( p  e.  (Walks `  G )  /\  ( # `
 ( 1st `  p
) )  =  N )  /\  ( ( 2nd `  p ) `
 0 )  =  X )  <->  ( p  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) ) )
2524bicomi 214 . . . . . 6  |-  ( ( p  e.  (Walks `  G )  /\  (
( # `  ( 1st `  p ) )  =  N  /\  ( ( 2nd `  p ) `
 0 )  =  X ) )  <->  ( (
p  e.  (Walks `  G )  /\  ( # `
 ( 1st `  p
) )  =  N )  /\  ( ( 2nd `  p ) `
 0 )  =  X ) )
2625abbii 2739 . . . . 5  |-  { p  |  ( p  e.  (Walks `  G )  /\  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) ) }  =  { p  |  ( ( p  e.  (Walks `  G )  /\  ( # `  ( 1st `  p ) )  =  N )  /\  ( ( 2nd `  p
) `  0 )  =  X ) }
27 fveq2 6191 . . . . . . . . . . . 12  |-  ( q  =  p  ->  ( 1st `  q )  =  ( 1st `  p
) )
2827fveq2d 6195 . . . . . . . . . . 11  |-  ( q  =  p  ->  ( # `
 ( 1st `  q
) )  =  (
# `  ( 1st `  p ) ) )
2928eqeq1d 2624 . . . . . . . . . 10  |-  ( q  =  p  ->  (
( # `  ( 1st `  q ) )  =  N  <->  ( # `  ( 1st `  p ) )  =  N ) )
3029elrab 3363 . . . . . . . . 9  |-  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  <->  ( p  e.  (Walks `  G )  /\  ( # `  ( 1st `  p ) )  =  N ) )
3130anbi1i 731 . . . . . . . 8  |-  ( ( p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  /\  ( ( 2nd `  p ) `
 0 )  =  X )  <->  ( (
p  e.  (Walks `  G )  /\  ( # `
 ( 1st `  p
) )  =  N )  /\  ( ( 2nd `  p ) `
 0 )  =  X ) )
3231bicomi 214 . . . . . . 7  |-  ( ( ( p  e.  (Walks `  G )  /\  ( # `
 ( 1st `  p
) )  =  N )  /\  ( ( 2nd `  p ) `
 0 )  =  X )  <->  ( p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  /\  (
( 2nd `  p
) `  0 )  =  X ) )
3332abbii 2739 . . . . . 6  |-  { p  |  ( ( p  e.  (Walks `  G
)  /\  ( # `  ( 1st `  p ) )  =  N )  /\  ( ( 2nd `  p
) `  0 )  =  X ) }  =  { p  |  (
p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  /\  ( ( 2nd `  p ) `
 0 )  =  X ) }
34 df-rab 2921 . . . . . 6  |-  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X }  =  {
p  |  ( p  e.  { q  e.  (Walks `  G )  |  ( # `  ( 1st `  q ) )  =  N }  /\  ( ( 2nd `  p
) `  0 )  =  X ) }
3533, 34eqtr4i 2647 . . . . 5  |-  { p  |  ( ( p  e.  (Walks `  G
)  /\  ( # `  ( 1st `  p ) )  =  N )  /\  ( ( 2nd `  p
) `  0 )  =  X ) }  =  { p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X }
3623, 26, 353eqtri 2648 . . . 4  |-  { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  X ) }  =  { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X }
37 f1oeq2 6128 . . . 4  |-  ( { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) }  =  { p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X }  ->  (
f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  X ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  <->  f : { p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } ) )
3836, 37mp1i 13 . . 3  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  ( f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  <->  f : { p  e.  { q  e.  (Walks `  G
)  |  ( # `  ( 1st `  q
) )  =  N }  |  ( ( 2nd `  p ) `
 0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } ) )
3938exbidv 1850 . 2  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  ( E. f 
f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p
) )  =  N  /\  ( ( 2nd `  p ) `  0
)  =  X ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  <->  E. f 
f : { p  e.  { q  e.  (Walks `  G )  |  (
# `  ( 1st `  q ) )  =  N }  |  ( ( 2nd `  p
) `  0 )  =  X } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } ) )
4022, 39mpbird 247 1  |-  ( ( G  e. USGraph  /\  N  e. 
NN0  /\  X  e.  (Vtx `  G ) )  ->  E. f  f : { p  e.  (Walks `  G )  |  ( ( # `  ( 1st `  p ) )  =  N  /\  (
( 2nd `  p
) `  0 )  =  X ) } -1-1-onto-> { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    |-> cmpt 4729    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   NN0cn0 11292   #chash 13117  Vtxcvtx 25874   USPGraph cuspgr 26043   USGraph cusgr 26044  Walkscwlks 26492   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgrnumwlkg  26872
  Copyright terms: Public domain W3C validator