| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabfodom | Structured version Visualization version Unicode version | ||
| Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| rabfodom.1 |
|
| rabfodom.2 |
|
| rabfodom.3 |
|
| Ref | Expression |
|---|---|
| rabfodom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . 6
| |
| 2 | 1 | rabex 4813 |
. . . . 5
|
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | rabfodom.3 |
. . . . . . . . . . . 12
| |
| 5 | fof 6115 |
. . . . . . . . . . . 12
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
|
| 7 | 6 | feqmptd 6249 |
. . . . . . . . . 10
|
| 8 | 7 | ad2antrr 762 |
. . . . . . . . 9
|
| 9 | 8 | reseq1d 5395 |
. . . . . . . 8
|
| 10 | elpwi 4168 |
. . . . . . . . . 10
| |
| 11 | 10 | ad2antlr 763 |
. . . . . . . . 9
|
| 12 | 11 | resmptd 5452 |
. . . . . . . 8
|
| 13 | 9, 12 | eqtrd 2656 |
. . . . . . 7
|
| 14 | f1oeq1 6127 |
. . . . . . . 8
| |
| 15 | 14 | biimpa 501 |
. . . . . . 7
|
| 16 | 13, 15 | sylancom 701 |
. . . . . 6
|
| 17 | simp1ll 1124 |
. . . . . . 7
| |
| 18 | 11 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 19 | simp2 1062 |
. . . . . . . 8
| |
| 20 | 18, 19 | sseldd 3604 |
. . . . . . 7
|
| 21 | simp3 1063 |
. . . . . . 7
| |
| 22 | rabfodom.1 |
. . . . . . 7
| |
| 23 | 17, 20, 21, 22 | syl3anc 1326 |
. . . . . 6
|
| 24 | 3, 16, 23 | f1oresrab 6395 |
. . . . 5
|
| 25 | f1oeng 7974 |
. . . . 5
| |
| 26 | 2, 24, 25 | sylancr 695 |
. . . 4
|
| 27 | 26 | ensymd 8007 |
. . 3
|
| 28 | rabfodom.2 |
. . . . . 6
| |
| 29 | rabexg 4812 |
. . . . . 6
| |
| 30 | 28, 29 | syl 17 |
. . . . 5
|
| 31 | 30 | ad2antrr 762 |
. . . 4
|
| 32 | rabss2 3685 |
. . . . 5
| |
| 33 | 11, 32 | syl 17 |
. . . 4
|
| 34 | ssdomg 8001 |
. . . 4
| |
| 35 | 31, 33, 34 | sylc 65 |
. . 3
|
| 36 | endomtr 8014 |
. . 3
| |
| 37 | 27, 35, 36 | syl2anc 693 |
. 2
|
| 38 | foresf1o 29343 |
. . 3
| |
| 39 | 28, 4, 38 | syl2anc 693 |
. 2
|
| 40 | 37, 39 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-r1 8627 df-rank 8628 df-card 8765 df-ac 8939 |
| This theorem is referenced by: locfinreflem 29907 |
| Copyright terms: Public domain | W3C validator |