Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfodom Structured version   Visualization version   Unicode version

Theorem rabfodom 29344
Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Hypotheses
Ref Expression
rabfodom.1  |-  ( (
ph  /\  x  e.  A  /\  y  =  ( F `  x ) )  ->  ( ch  <->  ps ) )
rabfodom.2  |-  ( ph  ->  A  e.  V )
rabfodom.3  |-  ( ph  ->  F : A -onto-> B
)
Assertion
Ref Expression
rabfodom  |-  ( ph  ->  { y  e.  B  |  ch }  ~<_  { x  e.  A  |  ps } )
Distinct variable groups:    x, A, y    x, B, y    x, F, y    x, V, y    ph, x, y    ps, y    ch, x
Allowed substitution hints:    ps( x)    ch( y)

Proof of Theorem rabfodom
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  a  e. 
_V
21rabex 4813 . . . . 5  |-  { x  e.  a  |  ps }  e.  _V
3 eqid 2622 . . . . . 6  |-  ( x  e.  a  |->  ( F `
 x ) )  =  ( x  e.  a  |->  ( F `  x ) )
4 rabfodom.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : A -onto-> B
)
5 fof 6115 . . . . . . . . . . . 12  |-  ( F : A -onto-> B  ->  F : A --> B )
64, 5syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
76feqmptd 6249 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
87ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
98reseq1d 5395 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  ( F  |`  a )  =  ( ( x  e.  A  |->  ( F `  x ) )  |`  a ) )
10 elpwi 4168 . . . . . . . . . 10  |-  ( a  e.  ~P A  -> 
a  C_  A )
1110ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  a  C_  A )
1211resmptd 5452 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  (
( x  e.  A  |->  ( F `  x
) )  |`  a
)  =  ( x  e.  a  |->  ( F `
 x ) ) )
139, 12eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  ( F  |`  a )  =  ( x  e.  a 
|->  ( F `  x
) ) )
14 f1oeq1 6127 . . . . . . . 8  |-  ( ( F  |`  a )  =  ( x  e.  a  |->  ( F `  x ) )  -> 
( ( F  |`  a ) : a -1-1-onto-> B  <-> 
( x  e.  a 
|->  ( F `  x
) ) : a -1-1-onto-> B ) )
1514biimpa 501 . . . . . . 7  |-  ( ( ( F  |`  a
)  =  ( x  e.  a  |->  ( F `
 x ) )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  ( x  e.  a  |->  ( F `
 x ) ) : a -1-1-onto-> B )
1613, 15sylancom 701 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  (
x  e.  a  |->  ( F `  x ) ) : a -1-1-onto-> B )
17 simp1ll 1124 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  ph )
18113ad2ant1 1082 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  a  C_  A )
19 simp2 1062 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  x  e.  a )
2018, 19sseldd 3604 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  x  e.  A )
21 simp3 1063 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  y  =  ( F `  x ) )
22 rabfodom.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  y  =  ( F `  x ) )  ->  ( ch  <->  ps ) )
2317, 20, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  ~P A
)  /\  ( F  |`  a ) : a -1-1-onto-> B )  /\  x  e.  a  /\  y  =  ( F `  x
) )  ->  ( ch 
<->  ps ) )
243, 16, 23f1oresrab 6395 . . . . 5  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  (
( x  e.  a 
|->  ( F `  x
) )  |`  { x  e.  a  |  ps } ) : {
x  e.  a  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
25 f1oeng 7974 . . . . 5  |-  ( ( { x  e.  a  |  ps }  e.  _V  /\  ( ( x  e.  a  |->  ( F `
 x ) )  |`  { x  e.  a  |  ps } ) : { x  e.  a  |  ps } -1-1-onto-> {
y  e.  B  |  ch } )  ->  { x  e.  a  |  ps }  ~~  { y  e.  B  |  ch }
)
262, 24, 25sylancr 695 . . . 4  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { x  e.  a  |  ps }  ~~  { y  e.  B  |  ch }
)
2726ensymd 8007 . . 3  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { y  e.  B  |  ch }  ~~  { x  e.  a  |  ps }
)
28 rabfodom.2 . . . . . 6  |-  ( ph  ->  A  e.  V )
29 rabexg 4812 . . . . . 6  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
3028, 29syl 17 . . . . 5  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
3130ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { x  e.  A  |  ps }  e.  _V )
32 rabss2 3685 . . . . 5  |-  ( a 
C_  A  ->  { x  e.  a  |  ps }  C_  { x  e.  A  |  ps }
)
3311, 32syl 17 . . . 4  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { x  e.  a  |  ps }  C_  { x  e.  A  |  ps }
)
34 ssdomg 8001 . . . 4  |-  ( { x  e.  A  |  ps }  e.  _V  ->  ( { x  e.  a  |  ps }  C_  { x  e.  A  |  ps }  ->  { x  e.  a  |  ps }  ~<_  { x  e.  A  |  ps }
) )
3531, 33, 34sylc 65 . . 3  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { x  e.  a  |  ps }  ~<_  { x  e.  A  |  ps }
)
36 endomtr 8014 . . 3  |-  ( ( { y  e.  B  |  ch }  ~~  {
x  e.  a  |  ps }  /\  {
x  e.  a  |  ps }  ~<_  { x  e.  A  |  ps } )  ->  { y  e.  B  |  ch }  ~<_  { x  e.  A  |  ps }
)
3727, 35, 36syl2anc 693 . 2  |-  ( ( ( ph  /\  a  e.  ~P A )  /\  ( F  |`  a ) : a -1-1-onto-> B )  ->  { y  e.  B  |  ch }  ~<_  { x  e.  A  |  ps }
)
38 foresf1o 29343 . . 3  |-  ( ( A  e.  V  /\  F : A -onto-> B )  ->  E. a  e.  ~P  A ( F  |`  a ) : a -1-1-onto-> B )
3928, 4, 38syl2anc 693 . 2  |-  ( ph  ->  E. a  e.  ~P  A ( F  |`  a ) : a -1-1-onto-> B )
4037, 39r19.29a 3078 1  |-  ( ph  ->  { y  e.  B  |  ch }  ~<_  { x  e.  A  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939
This theorem is referenced by:  locfinreflem  29907
  Copyright terms: Public domain W3C validator