| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gaid | Structured version Visualization version Unicode version | ||
| Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaid.1 |
|
| Ref | Expression |
|---|---|
| gaid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. . 3
| |
| 2 | 1 | anim2i 593 |
. 2
|
| 3 | gaid.1 |
. . . . . . . 8
| |
| 4 | eqid 2622 |
. . . . . . . 8
| |
| 5 | 3, 4 | grpidcl 17450 |
. . . . . . 7
|
| 6 | 5 | adantr 481 |
. . . . . 6
|
| 7 | ovres 6800 |
. . . . . . 7
| |
| 8 | df-ov 6653 |
. . . . . . . 8
| |
| 9 | fvex 6201 |
. . . . . . . . 9
| |
| 10 | vex 3203 |
. . . . . . . . 9
| |
| 11 | 9, 10 | op2nd 7177 |
. . . . . . . 8
|
| 12 | 8, 11 | eqtri 2644 |
. . . . . . 7
|
| 13 | 7, 12 | syl6eq 2672 |
. . . . . 6
|
| 14 | 6, 13 | sylan 488 |
. . . . 5
|
| 15 | simprl 794 |
. . . . . . . 8
| |
| 16 | simplr 792 |
. . . . . . . 8
| |
| 17 | ovres 6800 |
. . . . . . . . 9
| |
| 18 | df-ov 6653 |
. . . . . . . . . 10
| |
| 19 | vex 3203 |
. . . . . . . . . . 11
| |
| 20 | 19, 10 | op2nd 7177 |
. . . . . . . . . 10
|
| 21 | 18, 20 | eqtri 2644 |
. . . . . . . . 9
|
| 22 | 17, 21 | syl6eq 2672 |
. . . . . . . 8
|
| 23 | 15, 16, 22 | syl2anc 693 |
. . . . . . 7
|
| 24 | simprr 796 |
. . . . . . . . 9
| |
| 25 | ovres 6800 |
. . . . . . . . . 10
| |
| 26 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 27 | vex 3203 |
. . . . . . . . . . . 12
| |
| 28 | 27, 10 | op2nd 7177 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | eqtri 2644 |
. . . . . . . . . 10
|
| 30 | 25, 29 | syl6eq 2672 |
. . . . . . . . 9
|
| 31 | 24, 16, 30 | syl2anc 693 |
. . . . . . . 8
|
| 32 | 31 | oveq2d 6666 |
. . . . . . 7
|
| 33 | simpll 790 |
. . . . . . . . 9
| |
| 34 | eqid 2622 |
. . . . . . . . . . 11
| |
| 35 | 3, 34 | grpcl 17430 |
. . . . . . . . . 10
|
| 36 | 35 | 3expb 1266 |
. . . . . . . . 9
|
| 37 | 33, 36 | sylan 488 |
. . . . . . . 8
|
| 38 | ovres 6800 |
. . . . . . . . 9
| |
| 39 | df-ov 6653 |
. . . . . . . . . 10
| |
| 40 | ovex 6678 |
. . . . . . . . . . 11
| |
| 41 | 40, 10 | op2nd 7177 |
. . . . . . . . . 10
|
| 42 | 39, 41 | eqtri 2644 |
. . . . . . . . 9
|
| 43 | 38, 42 | syl6eq 2672 |
. . . . . . . 8
|
| 44 | 37, 16, 43 | syl2anc 693 |
. . . . . . 7
|
| 45 | 23, 32, 44 | 3eqtr4rd 2667 |
. . . . . 6
|
| 46 | 45 | ralrimivva 2971 |
. . . . 5
|
| 47 | 14, 46 | jca 554 |
. . . 4
|
| 48 | 47 | ralrimiva 2966 |
. . 3
|
| 49 | f2ndres 7191 |
. . 3
| |
| 50 | 48, 49 | jctil 560 |
. 2
|
| 51 | 3, 34, 4 | isga 17724 |
. 2
|
| 52 | 2, 50, 51 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-2nd 7169 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ga 17723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |