MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaid Structured version   Visualization version   Unicode version

Theorem gaid 17732
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaid.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gaid  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S ) )

Proof of Theorem gaid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( S  e.  V  ->  S  e.  _V )
21anim2i 593 . 2  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( G  e.  Grp  /\  S  e.  _V )
)
3 gaid.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
4 eqid 2622 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
53, 4grpidcl 17450 . . . . . . 7  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
65adantr 481 . . . . . 6  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 0g `  G
)  e.  X )
7 ovres 6800 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  x  e.  S )  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  ( ( 0g
`  G ) 2nd x ) )
8 df-ov 6653 . . . . . . . 8  |-  ( ( 0g `  G ) 2nd x )  =  ( 2nd `  <. ( 0g `  G ) ,  x >. )
9 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
10 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
119, 10op2nd 7177 . . . . . . . 8  |-  ( 2nd `  <. ( 0g `  G ) ,  x >. )  =  x
128, 11eqtri 2644 . . . . . . 7  |-  ( ( 0g `  G ) 2nd x )  =  x
137, 12syl6eq 2672 . . . . . 6  |-  ( ( ( 0g `  G
)  e.  X  /\  x  e.  S )  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
146, 13sylan 488 . . . . 5  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
15 simprl 794 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  y  e.  X )
16 simplr 792 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  x  e.  S )
17 ovres 6800 . . . . . . . . 9  |-  ( ( y  e.  X  /\  x  e.  S )  ->  ( y ( 2nd  |`  ( X  X.  S
) ) x )  =  ( y 2nd x ) )
18 df-ov 6653 . . . . . . . . . 10  |-  ( y 2nd x )  =  ( 2nd `  <. y ,  x >. )
19 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
2019, 10op2nd 7177 . . . . . . . . . 10  |-  ( 2nd `  <. y ,  x >. )  =  x
2118, 20eqtri 2644 . . . . . . . . 9  |-  ( y 2nd x )  =  x
2217, 21syl6eq 2672 . . . . . . . 8  |-  ( ( y  e.  X  /\  x  e.  S )  ->  ( y ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
2315, 16, 22syl2anc 693 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( 2nd  |`  ( X  X.  S ) ) x )  =  x )
24 simprr 796 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  z  e.  X )
25 ovres 6800 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  S )  ->  ( z ( 2nd  |`  ( X  X.  S
) ) x )  =  ( z 2nd x ) )
26 df-ov 6653 . . . . . . . . . . 11  |-  ( z 2nd x )  =  ( 2nd `  <. z ,  x >. )
27 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
2827, 10op2nd 7177 . . . . . . . . . . 11  |-  ( 2nd `  <. z ,  x >. )  =  x
2926, 28eqtri 2644 . . . . . . . . . 10  |-  ( z 2nd x )  =  x
3025, 29syl6eq 2672 . . . . . . . . 9  |-  ( ( z  e.  X  /\  x  e.  S )  ->  ( z ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
3124, 16, 30syl2anc 693 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( z
( 2nd  |`  ( X  X.  S ) ) x )  =  x )
3231oveq2d 6666 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) )  =  ( y ( 2nd  |`  ( X  X.  S ) ) x ) )
33 simpll 790 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  G  e.  Grp )
34 eqid 2622 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
353, 34grpcl 17430 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
36353expb 1266 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
3733, 36sylan 488 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( +g  `  G ) z )  e.  X
)
38 ovres 6800 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  X  /\  x  e.  S )  ->  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( ( y ( +g  `  G ) z ) 2nd x ) )
39 df-ov 6653 . . . . . . . . . 10  |-  ( ( y ( +g  `  G
) z ) 2nd x )  =  ( 2nd `  <. (
y ( +g  `  G
) z ) ,  x >. )
40 ovex 6678 . . . . . . . . . . 11  |-  ( y ( +g  `  G
) z )  e. 
_V
4140, 10op2nd 7177 . . . . . . . . . 10  |-  ( 2nd `  <. ( y ( +g  `  G ) z ) ,  x >. )  =  x
4239, 41eqtri 2644 . . . . . . . . 9  |-  ( ( y ( +g  `  G
) z ) 2nd x )  =  x
4338, 42syl6eq 2672 . . . . . . . 8  |-  ( ( ( y ( +g  `  G ) z )  e.  X  /\  x  e.  S )  ->  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
4437, 16, 43syl2anc 693 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
4523, 32, 443eqtr4rd 2667 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) )
4645ralrimivva 2971 . . . . 5  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  A. y  e.  X  A. z  e.  X  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) )
4714, 46jca 554 . . . 4  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  ( (
( 0g `  G
) ( 2nd  |`  ( X  X.  S ) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) )
4847ralrimiva 2966 . . 3  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  A. x  e.  S  ( ( ( 0g
`  G ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) )
49 f2ndres 7191 . . 3  |-  ( 2nd  |`  ( X  X.  S
) ) : ( X  X.  S ) --> S
5048, 49jctil 560 . 2  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( ( 2nd  |`  ( X  X.  S ) ) : ( X  X.  S ) --> S  /\  A. x  e.  S  ( ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) ) )
513, 34, 4isga 17724 . 2  |-  ( ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S )  <-> 
( ( G  e. 
Grp  /\  S  e.  _V )  /\  (
( 2nd  |`  ( X  X.  S ) ) : ( X  X.  S ) --> S  /\  A. x  e.  S  ( ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) ) ) )
522, 50, 51sylanbrc 698 1  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-2nd 7169  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ga 17723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator