Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima2 Structured version   Visualization version   Unicode version

Theorem xpinpreima2 29953
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by  1st and  2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima2  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) ) )

Proof of Theorem xpinpreima2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 xpss 5226 . . . . . 6  |-  ( E  X.  F )  C_  ( _V  X.  _V )
2 rabss2 3685 . . . . . 6  |-  ( ( E  X.  F ) 
C_  ( _V  X.  _V )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } 
C_  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B
) } )
31, 2mp1i 13 . . . . 5  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  C_  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B
) } )
4 simprl 794 . . . . . . 7  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  r  e.  ( _V  X.  _V ) )
5 simpll 790 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  A  C_  E )
6 simprrl 804 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 1st `  r )  e.  A )
75, 6sseldd 3604 . . . . . . . 8  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 1st `  r )  e.  E )
8 simplr 792 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  B  C_  F )
9 simprrr 805 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 2nd `  r )  e.  B )
108, 9sseldd 3604 . . . . . . . 8  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 2nd `  r )  e.  F )
117, 10jca 554 . . . . . . 7  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  (
( 1st `  r
)  e.  E  /\  ( 2nd `  r )  e.  F ) )
12 elxp7 7201 . . . . . . 7  |-  ( r  e.  ( E  X.  F )  <->  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  E  /\  ( 2nd `  r
)  e.  F ) ) )
134, 11, 12sylanbrc 698 . . . . . 6  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  r  e.  ( E  X.  F
) )
1413rabss3d 29351 . . . . 5  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  C_  { r  e.  ( E  X.  F
)  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B ) } )
153, 14eqssd 3620 . . . 4  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  =  { r  e.  ( _V  X.  _V )  |  (
( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } )
16 xp2 7203 . . . 4  |-  ( A  X.  B )  =  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }
1715, 16syl6reqr 2675 . . 3  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } )
18 inrab 3899 . . 3  |-  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
)  =  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) }
1917, 18syl6eqr 2674 . 2  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
) )
20 f1stres 7190 . . . . 5  |-  ( 1st  |`  ( E  X.  F
) ) : ( E  X.  F ) --> E
21 ffn 6045 . . . . 5  |-  ( ( 1st  |`  ( E  X.  F ) ) : ( E  X.  F
) --> E  ->  ( 1st  |`  ( E  X.  F ) )  Fn  ( E  X.  F
) )
22 fncnvima2 6339 . . . . 5  |-  ( ( 1st  |`  ( E  X.  F ) )  Fn  ( E  X.  F
)  ->  ( `' ( 1st  |`  ( E  X.  F ) ) " A )  =  {
r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A } )
2320, 21, 22mp2b 10 . . . 4  |-  ( `' ( 1st  |`  ( E  X.  F ) )
" A )  =  { r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F
) ) `  r
)  e.  A }
24 fvres 6207 . . . . . 6  |-  ( r  e.  ( E  X.  F )  ->  (
( 1st  |`  ( E  X.  F ) ) `
 r )  =  ( 1st `  r
) )
2524eleq1d 2686 . . . . 5  |-  ( r  e.  ( E  X.  F )  ->  (
( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A  <->  ( 1st `  r
)  e.  A ) )
2625rabbiia 3185 . . . 4  |-  { r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A }  =  {
r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }
2723, 26eqtri 2644 . . 3  |-  ( `' ( 1st  |`  ( E  X.  F ) )
" A )  =  { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }
28 f2ndres 7191 . . . . 5  |-  ( 2nd  |`  ( E  X.  F
) ) : ( E  X.  F ) --> F
29 ffn 6045 . . . . 5  |-  ( ( 2nd  |`  ( E  X.  F ) ) : ( E  X.  F
) --> F  ->  ( 2nd  |`  ( E  X.  F ) )  Fn  ( E  X.  F
) )
30 fncnvima2 6339 . . . . 5  |-  ( ( 2nd  |`  ( E  X.  F ) )  Fn  ( E  X.  F
)  ->  ( `' ( 2nd  |`  ( E  X.  F ) ) " B )  =  {
r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B } )
3128, 29, 30mp2b 10 . . . 4  |-  ( `' ( 2nd  |`  ( E  X.  F ) )
" B )  =  { r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F
) ) `  r
)  e.  B }
32 fvres 6207 . . . . . 6  |-  ( r  e.  ( E  X.  F )  ->  (
( 2nd  |`  ( E  X.  F ) ) `
 r )  =  ( 2nd `  r
) )
3332eleq1d 2686 . . . . 5  |-  ( r  e.  ( E  X.  F )  ->  (
( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B  <->  ( 2nd `  r
)  e.  B ) )
3433rabbiia 3185 . . . 4  |-  { r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B }  =  {
r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
3531, 34eqtri 2644 . . 3  |-  ( `' ( 2nd  |`  ( E  X.  F ) )
" B )  =  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
3627, 35ineq12i 3812 . 2  |-  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) )  =  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
)
3719, 36syl6eqr 2674 1  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  cnre2csqima  29957  sxbrsigalem2  30348  sxbrsiga  30352
  Copyright terms: Public domain W3C validator