Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   Unicode version

Theorem xlimxrre 40057
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis  F  e.  dom  ~~> is probably not enough, since in principle we could have +oo  e.  CC and -oo  e.  CC). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m  |-  ( ph  ->  M  e.  ZZ )
xlimxrre.z  |-  Z  =  ( ZZ>= `  M )
xlimxrre.f  |-  ( ph  ->  F : Z --> RR* )
xlimxrre.a  |-  ( ph  ->  A  e.  RR )
xlimxrre.c  |-  ( ph  ->  F~~>* A )
Assertion
Ref Expression
xlimxrre  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> RR )
Distinct variable groups:    A, j    j, F    j, M    j, Z    ph, j

Proof of Theorem xlimxrre
Dummy variables  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12205 . . . . . . 7  |-  ( ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  ( F `  k )  e.  RR )
21anim2i 593 . . . . . 6  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) )  ->  ( k  e. 
dom  F  /\  ( F `  k )  e.  RR ) )
32ralimi 2952 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  RR ) )
43adantl 482 . . . 4  |-  ( (
ph  /\  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  RR ) )
5 xlimxrre.f . . . . . . 7  |-  ( ph  ->  F : Z --> RR* )
65ffund 6049 . . . . . 6  |-  ( ph  ->  Fun  F )
7 ffvresb 6394 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> RR  <->  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  RR ) ) )
86, 7syl 17 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> RR  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  RR ) ) )
98adantr 481 . . . 4  |-  ( (
ph  /\  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) )  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> RR  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  RR ) ) )
104, 9mpbird 247 . . 3  |-  ( (
ph  /\  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) )  ->  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> RR )
1110adantrl 752 . 2  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) ) )  -> 
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> RR )
12 xlimxrre.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
13 peano2rem 10348 . . . . . 6  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
1412, 13syl 17 . . . . 5  |-  ( ph  ->  ( A  -  1 )  e.  RR )
1514rexrd 10089 . . . 4  |-  ( ph  ->  ( A  -  1 )  e.  RR* )
16 peano2re 10209 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
1712, 16syl 17 . . . . 5  |-  ( ph  ->  ( A  +  1 )  e.  RR )
1817rexrd 10089 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  RR* )
1912ltm1d 10956 . . . 4  |-  ( ph  ->  ( A  -  1 )  <  A )
2012ltp1d 10954 . . . 4  |-  ( ph  ->  A  <  ( A  +  1 ) )
2115, 18, 12, 19, 20eliood 39720 . . 3  |-  ( ph  ->  A  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) )
22 iooordt 21021 . . . 4  |-  ( ( A  -  1 ) (,) ( A  + 
1 ) )  e.  (ordTop `  <_  )
23 xlimxrre.c . . . . . 6  |-  ( ph  ->  F~~>* A )
24 nfcv 2764 . . . . . . 7  |-  F/_ k F
25 xlimxrre.m . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
26 xlimxrre.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
27 eqid 2622 . . . . . . 7  |-  (ordTop `  <_  )  =  (ordTop `  <_  )
2824, 25, 26, 5, 27xlimbr 40053 . . . . . 6  |-  ( ph  ->  ( F~~>* A  <->  ( A  e.  RR*  /\  A. u  e.  (ordTop `  <_  ) ( A  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
2923, 28mpbid 222 . . . . 5  |-  ( ph  ->  ( A  e.  RR*  /\ 
A. u  e.  (ordTop `  <_  ) ( A  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
3029simprd 479 . . . 4  |-  ( ph  ->  A. u  e.  (ordTop `  <_  ) ( A  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
31 eleq2 2690 . . . . . 6  |-  ( u  =  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  ( A  e.  u  <->  A  e.  ( ( A  - 
1 ) (,) ( A  +  1 ) ) ) )
32 eleq2 2690 . . . . . . . 8  |-  ( u  =  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) )
3332anbi2d 740 . . . . . . 7  |-  ( u  =  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  u
)  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  ( ( A  - 
1 ) (,) ( A  +  1 ) ) ) ) )
3433rexralbidv 3058 . . . . . 6  |-  ( u  =  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) ) ) )
3531, 34imbi12d 334 . . . . 5  |-  ( u  =  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  (
( A  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  <->  ( A  e.  ( ( A  - 
1 ) (,) ( A  +  1 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( A  -  1 ) (,) ( A  +  1 ) ) ) ) ) )
3635rspcva 3307 . . . 4  |-  ( ( ( ( A  - 
1 ) (,) ( A  +  1 ) )  e.  (ordTop `  <_  )  /\  A. u  e.  (ordTop `  <_  ) ( A  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  ->  ( A  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) ) ) )
3722, 30, 36sylancr 695 . . 3  |-  ( ph  ->  ( A  e.  ( ( A  -  1 ) (,) ( A  +  1 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) ) ) )
3821, 37mpd 15 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( A  -  1 ) (,) ( A  + 
1 ) ) ) )
3911, 38reximddv 3018 1  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   dom cdm 5114    |` cres 5116   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175  ordTopcordt 16159  ~~>*clsxlim 40044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-xlim 40045
This theorem is referenced by:  xlimclim2  40066
  Copyright terms: Public domain W3C validator