| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem24 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fin23 9211. In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem24 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 790 |
. . . . . 6
| |
| 2 | simplr 792 |
. . . . . . 7
| |
| 3 | simprl 794 |
. . . . . . 7
| |
| 4 | 2, 3 | sseldd 3604 |
. . . . . 6
|
| 5 | ordelord 5745 |
. . . . . 6
| |
| 6 | 1, 4, 5 | syl2anc 693 |
. . . . 5
|
| 7 | simprr 796 |
. . . . . . 7
| |
| 8 | 2, 7 | sseldd 3604 |
. . . . . 6
|
| 9 | ordelord 5745 |
. . . . . 6
| |
| 10 | 1, 8, 9 | syl2anc 693 |
. . . . 5
|
| 11 | ordtri3 5759 |
. . . . . 6
| |
| 12 | 11 | necon2abid 2836 |
. . . . 5
|
| 13 | 6, 10, 12 | syl2anc 693 |
. . . 4
|
| 14 | simpr 477 |
. . . . . . . . 9
| |
| 15 | simplrl 800 |
. . . . . . . . 9
| |
| 16 | 14, 15 | elind 3798 |
. . . . . . . 8
|
| 17 | 6 | adantr 481 |
. . . . . . . . . 10
|
| 18 | ordirr 5741 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
|
| 20 | inss1 3833 |
. . . . . . . . . 10
| |
| 21 | 20 | sseli 3599 |
. . . . . . . . 9
|
| 22 | 19, 21 | nsyl 135 |
. . . . . . . 8
|
| 23 | nelne1 2890 |
. . . . . . . 8
| |
| 24 | 16, 22, 23 | syl2anc 693 |
. . . . . . 7
|
| 25 | 24 | necomd 2849 |
. . . . . 6
|
| 26 | simpr 477 |
. . . . . . . 8
| |
| 27 | simplrr 801 |
. . . . . . . 8
| |
| 28 | 26, 27 | elind 3798 |
. . . . . . 7
|
| 29 | 10 | adantr 481 |
. . . . . . . . 9
|
| 30 | ordirr 5741 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
|
| 32 | inss1 3833 |
. . . . . . . . 9
| |
| 33 | 32 | sseli 3599 |
. . . . . . . 8
|
| 34 | 31, 33 | nsyl 135 |
. . . . . . 7
|
| 35 | nelne1 2890 |
. . . . . . 7
| |
| 36 | 28, 34, 35 | syl2anc 693 |
. . . . . 6
|
| 37 | 25, 36 | jaodan 826 |
. . . . 5
|
| 38 | 37 | ex 450 |
. . . 4
|
| 39 | 13, 38 | sylbird 250 |
. . 3
|
| 40 | 39 | necon4d 2818 |
. 2
|
| 41 | ineq1 3807 |
. 2
| |
| 42 | 40, 41 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 |
| This theorem is referenced by: fin23lem23 9148 |
| Copyright terms: Public domain | W3C validator |