MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem23 Structured version   Visualization version   Unicode version

Theorem fin23lem23 9148
Description: Lemma for fin23lem22 9149. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem23  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  i
)
Distinct variable group:    i, j, S

Proof of Theorem fin23lem23
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fin23lem26 9147 . 2  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  i )
2 ensym 8005 . . . . . 6  |-  ( ( a  i^i  S ) 
~~  i  ->  i  ~~  ( a  i^i  S
) )
3 entr 8008 . . . . . 6  |-  ( ( ( j  i^i  S
)  ~~  i  /\  i  ~~  ( a  i^i 
S ) )  -> 
( j  i^i  S
)  ~~  ( a  i^i  S ) )
42, 3sylan2 491 . . . . 5  |-  ( ( ( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  ( j  i^i  S
)  ~~  ( a  i^i  S ) )
5 simpl 473 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  S  C_  om )
6 simprl 794 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  j  e.  S )
75, 6sseldd 3604 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  j  e.  om )
8 nnfi 8153 . . . . . . . . 9  |-  ( j  e.  om  ->  j  e.  Fin )
9 inss1 3833 . . . . . . . . 9  |-  ( j  i^i  S )  C_  j
10 ssfi 8180 . . . . . . . . 9  |-  ( ( j  e.  Fin  /\  ( j  i^i  S
)  C_  j )  ->  ( j  i^i  S
)  e.  Fin )
118, 9, 10sylancl 694 . . . . . . . 8  |-  ( j  e.  om  ->  (
j  i^i  S )  e.  Fin )
127, 11syl 17 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( j  i^i  S )  e.  Fin )
13 simprr 796 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  a  e.  S )
145, 13sseldd 3604 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  a  e.  om )
15 nnfi 8153 . . . . . . . . 9  |-  ( a  e.  om  ->  a  e.  Fin )
16 inss1 3833 . . . . . . . . 9  |-  ( a  i^i  S )  C_  a
17 ssfi 8180 . . . . . . . . 9  |-  ( ( a  e.  Fin  /\  ( a  i^i  S
)  C_  a )  ->  ( a  i^i  S
)  e.  Fin )
1815, 16, 17sylancl 694 . . . . . . . 8  |-  ( a  e.  om  ->  (
a  i^i  S )  e.  Fin )
1914, 18syl 17 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( a  i^i  S )  e.  Fin )
20 nnord 7073 . . . . . . . . . 10  |-  ( j  e.  om  ->  Ord  j )
21 nnord 7073 . . . . . . . . . 10  |-  ( a  e.  om  ->  Ord  a )
22 ordtri2or2 5823 . . . . . . . . . 10  |-  ( ( Ord  j  /\  Ord  a )  ->  (
j  C_  a  \/  a  C_  j ) )
2320, 21, 22syl2an 494 . . . . . . . . 9  |-  ( ( j  e.  om  /\  a  e.  om )  ->  ( j  C_  a  \/  a  C_  j ) )
247, 14, 23syl2anc 693 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( j  C_  a  \/  a  C_  j ) )
25 ssrin 3838 . . . . . . . . 9  |-  ( j 
C_  a  ->  (
j  i^i  S )  C_  ( a  i^i  S
) )
26 ssrin 3838 . . . . . . . . 9  |-  ( a 
C_  j  ->  (
a  i^i  S )  C_  ( j  i^i  S
) )
2725, 26orim12i 538 . . . . . . . 8  |-  ( ( j  C_  a  \/  a  C_  j )  -> 
( ( j  i^i 
S )  C_  (
a  i^i  S )  \/  ( a  i^i  S
)  C_  ( j  i^i  S ) ) )
2824, 27syl 17 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  C_  ( a  i^i  S
)  \/  ( a  i^i  S )  C_  ( j  i^i  S
) ) )
29 fin23lem25 9146 . . . . . . 7  |-  ( ( ( j  i^i  S
)  e.  Fin  /\  ( a  i^i  S
)  e.  Fin  /\  ( ( j  i^i 
S )  C_  (
a  i^i  S )  \/  ( a  i^i  S
)  C_  ( j  i^i  S ) ) )  ->  ( ( j  i^i  S )  ~~  ( a  i^i  S
)  <->  ( j  i^i 
S )  =  ( a  i^i  S ) ) )
3012, 19, 28, 29syl3anc 1326 . . . . . 6  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  ~~  ( a  i^i  S
)  <->  ( j  i^i 
S )  =  ( a  i^i  S ) ) )
31 ordom 7074 . . . . . . 7  |-  Ord  om
32 fin23lem24 9144 . . . . . . 7  |-  ( ( ( Ord  om  /\  S  C_  om )  /\  ( j  e.  S  /\  a  e.  S
) )  ->  (
( j  i^i  S
)  =  ( a  i^i  S )  <->  j  =  a ) )
3331, 32mpanl1 716 . . . . . 6  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  =  ( a  i^i 
S )  <->  j  =  a ) )
3430, 33bitrd 268 . . . . 5  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  ~~  ( a  i^i  S
)  <->  j  =  a ) )
354, 34syl5ib 234 . . . 4  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) )
3635ralrimivva 2971 . . 3  |-  ( S 
C_  om  ->  A. j  e.  S  A. a  e.  S  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) )
3736ad2antrr 762 . 2  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  A. j  e.  S  A. a  e.  S  ( ( ( j  i^i  S )  ~~  i  /\  ( a  i^i 
S )  ~~  i
)  ->  j  =  a ) )
38 ineq1 3807 . . . 4  |-  ( j  =  a  ->  (
j  i^i  S )  =  ( a  i^i 
S ) )
3938breq1d 4663 . . 3  |-  ( j  =  a  ->  (
( j  i^i  S
)  ~~  i  <->  ( a  i^i  S )  ~~  i
) )
4039reu4 3400 . 2  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  i  <->  ( E. j  e.  S  (
j  i^i  S )  ~~  i  /\  A. j  e.  S  A. a  e.  S  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) ) )
411, 37, 40sylanbrc 698 1  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  i
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    i^i cin 3573    C_ wss 3574   class class class wbr 4653   Ord word 5722   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  fin23lem22  9149  fin23lem27  9150
  Copyright terms: Public domain W3C validator