MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3 Structured version   Visualization version   Unicode version

Theorem ordtri3 5759
Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordtri3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A ) ) )

Proof of Theorem ordtri3
StepHypRef Expression
1 ordirr 5741 . . . . . 6  |-  ( Ord 
B  ->  -.  B  e.  B )
21adantl 482 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  -.  B  e.  B )
3 eleq2 2690 . . . . . 6  |-  ( A  =  B  ->  ( B  e.  A  <->  B  e.  B ) )
43notbid 308 . . . . 5  |-  ( A  =  B  ->  ( -.  B  e.  A  <->  -.  B  e.  B ) )
52, 4syl5ibrcom 237 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  ->  -.  B  e.  A ) )
65pm4.71d 666 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  ( A  =  B  /\  -.  B  e.  A ) ) )
7 pm5.61 749 . . . 4  |-  ( ( ( A  =  B  \/  B  e.  A
)  /\  -.  B  e.  A )  <->  ( A  =  B  /\  -.  B  e.  A ) )
8 pm4.52 512 . . . 4  |-  ( ( ( A  =  B  \/  B  e.  A
)  /\  -.  B  e.  A )  <->  -.  ( -.  ( A  =  B  \/  B  e.  A
)  \/  B  e.  A ) )
97, 8bitr3i 266 . . 3  |-  ( ( A  =  B  /\  -.  B  e.  A
)  <->  -.  ( -.  ( A  =  B  \/  B  e.  A
)  \/  B  e.  A ) )
106, 9syl6bb 276 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  -.  ( -.  ( A  =  B  \/  B  e.  A
)  \/  B  e.  A ) ) )
11 ordtri2 5758 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
1211orbi1d 739 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  B  e.  A )  <->  ( -.  ( A  =  B  \/  B  e.  A )  \/  B  e.  A ) ) )
1312notbid 308 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  e.  B  \/  B  e.  A
)  <->  -.  ( -.  ( A  =  B  \/  B  e.  A
)  \/  B  e.  A ) ) )
1410, 13bitr4d 271 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordunisuc2  7044  tz7.48lem  7536  oacan  7628  omcan  7649  oecan  7669  omsmo  7734  omopthi  7737  inf3lem6  8530  cantnfp1lem3  8577  infpssrlem5  9129  fin23lem24  9144  isf32lem4  9178  om2uzf1oi  12752
  Copyright terms: Public domain W3C validator