Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec Structured version   Visualization version   Unicode version

Theorem topfneec 32350
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
topfneec.1  |-  .~  =  ( Fne  i^i  `' Fne )
Assertion
Ref Expression
topfneec  |-  ( J  e.  Top  ->  ( A  e.  [ J ]  .~  <->  ( topGen `  A
)  =  J ) )

Proof of Theorem topfneec
StepHypRef Expression
1 topfneec.1 . . . . 5  |-  .~  =  ( Fne  i^i  `' Fne )
21fneer 32348 . . . 4  |-  .~  Er  _V
3 errel 7751 . . . 4  |-  (  .~  Er  _V  ->  Rel  .~  )
42, 3ax-mp 5 . . 3  |-  Rel  .~
5 relelec 7787 . . 3  |-  ( Rel 
.~  ->  ( A  e. 
[ J ]  .~  <->  J  .~  A ) )
64, 5ax-mp 5 . 2  |-  ( A  e.  [ J ]  .~ 
<->  J  .~  A )
74brrelex2i 5159 . . . 4  |-  ( J  .~  A  ->  A  e.  _V )
87a1i 11 . . 3  |-  ( J  e.  Top  ->  ( J  .~  A  ->  A  e.  _V ) )
9 eleq1 2689 . . . . . . 7  |-  ( (
topGen `  A )  =  J  ->  ( ( topGen `
 A )  e. 
Top 
<->  J  e.  Top )
)
109biimparc 504 . . . . . 6  |-  ( ( J  e.  Top  /\  ( topGen `  A )  =  J )  ->  ( topGen `
 A )  e. 
Top )
11 tgclb 20774 . . . . . 6  |-  ( A  e.  TopBases 
<->  ( topGen `  A )  e.  Top )
1210, 11sylibr 224 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  A )  =  J )  ->  A  e. 
TopBases )
13 elex 3212 . . . . 5  |-  ( A  e.  TopBases  ->  A  e.  _V )
1412, 13syl 17 . . . 4  |-  ( ( J  e.  Top  /\  ( topGen `  A )  =  J )  ->  A  e.  _V )
1514ex 450 . . 3  |-  ( J  e.  Top  ->  (
( topGen `  A )  =  J  ->  A  e. 
_V ) )
161fneval 32347 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( J  .~  A  <->  (
topGen `  J )  =  ( topGen `  A )
) )
17 tgtop 20777 . . . . . . . 8  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
1817eqeq1d 2624 . . . . . . 7  |-  ( J  e.  Top  ->  (
( topGen `  J )  =  ( topGen `  A
)  <->  J  =  ( topGen `
 A ) ) )
19 eqcom 2629 . . . . . . 7  |-  ( J  =  ( topGen `  A
)  <->  ( topGen `  A
)  =  J )
2018, 19syl6bb 276 . . . . . 6  |-  ( J  e.  Top  ->  (
( topGen `  J )  =  ( topGen `  A
)  <->  ( topGen `  A
)  =  J ) )
2120adantr 481 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( ( topGen `  J
)  =  ( topGen `  A )  <->  ( topGen `  A )  =  J ) )
2216, 21bitrd 268 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( J  .~  A  <->  (
topGen `  A )  =  J ) )
2322ex 450 . . 3  |-  ( J  e.  Top  ->  ( A  e.  _V  ->  ( J  .~  A  <->  ( topGen `  A )  =  J ) ) )
248, 15, 23pm5.21ndd 369 . 2  |-  ( J  e.  Top  ->  ( J  .~  A  <->  ( topGen `  A )  =  J ) )
256, 24syl5bb 272 1  |-  ( J  e.  Top  ->  ( A  e.  [ J ]  .~  <->  ( topGen `  A
)  =  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   class class class wbr 4653   `'ccnv 5113   Rel wrel 5119   ` cfv 5888    Er wer 7739   [cec 7740   topGenctg 16098   Topctop 20698   TopBasesctb 20749   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-er 7742  df-ec 7744  df-topgen 16104  df-top 20699  df-bases 20750  df-fne 32332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator