MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelrni Structured version   Visualization version   Unicode version

Theorem foelrni 6244
Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
Assertion
Ref Expression
foelrni  |-  ( ( F : A -onto-> B  /\  Y  e.  B
)  ->  E. x  e.  A  ( F `  x )  =  Y )
Distinct variable groups:    x, A    x, B    x, F    x, Y

Proof of Theorem foelrni
StepHypRef Expression
1 forn 6118 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
21eleq2d 2687 . . 3  |-  ( F : A -onto-> B  -> 
( Y  e.  ran  F  <-> 
Y  e.  B ) )
3 fofn 6117 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
4 fvelrnb 6243 . . . 4  |-  ( F  Fn  A  ->  ( Y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  Y ) )
53, 4syl 17 . . 3  |-  ( F : A -onto-> B  -> 
( Y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  Y ) )
62, 5bitr3d 270 . 2  |-  ( F : A -onto-> B  -> 
( Y  e.  B  <->  E. x  e.  A  ( F `  x )  =  Y ) )
76biimpa 501 1  |-  ( ( F : A -onto-> B  /\  Y  e.  B
)  ->  E. x  e.  A  ( F `  x )  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   ran crn 5115    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  mhmid  17536  mhmmnd  17537  ghmgrp  17539  symgmov2  17813  ghmcmn  18237  founiiun  39360  founiiun0  39377  sge0f1o  40599  isomenndlem  40744  ovnsubaddlem1  40784
  Copyright terms: Public domain W3C validator