MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem1 Structured version   Visualization version   Unicode version

Theorem frgrncvvdeqlem1 27163
Description: Lemma 1 for frgrncvvdeq 27173. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 28-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1  |-  V  =  (Vtx `  G )
frgrncvvdeq.e  |-  E  =  (Edg `  G )
frgrncvvdeq.nx  |-  D  =  ( G NeighbVtx  X )
frgrncvvdeq.ny  |-  N  =  ( G NeighbVtx  Y )
frgrncvvdeq.x  |-  ( ph  ->  X  e.  V )
frgrncvvdeq.y  |-  ( ph  ->  Y  e.  V )
frgrncvvdeq.ne  |-  ( ph  ->  X  =/=  Y )
frgrncvvdeq.xy  |-  ( ph  ->  Y  e/  D )
frgrncvvdeq.f  |-  ( ph  ->  G  e. FriendGraph  )
frgrncvvdeq.a  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )
Assertion
Ref Expression
frgrncvvdeqlem1  |-  ( ph  ->  X  e/  N )

Proof of Theorem frgrncvvdeqlem1
StepHypRef Expression
1 frgrncvvdeq.xy . . . 4  |-  ( ph  ->  Y  e/  D )
2 df-nel 2898 . . . . 5  |-  ( Y  e/  D  <->  -.  Y  e.  D )
3 frgrncvvdeq.nx . . . . . 6  |-  D  =  ( G NeighbVtx  X )
43eleq2i 2693 . . . . 5  |-  ( Y  e.  D  <->  Y  e.  ( G NeighbVtx  X ) )
52, 4xchbinx 324 . . . 4  |-  ( Y  e/  D  <->  -.  Y  e.  ( G NeighbVtx  X )
)
61, 5sylib 208 . . 3  |-  ( ph  ->  -.  Y  e.  ( G NeighbVtx  X ) )
7 frgrncvvdeq.f . . . 4  |-  ( ph  ->  G  e. FriendGraph  )
8 nbgrsym 26265 . . . 4  |-  ( G  e. FriendGraph  ->  ( X  e.  ( G NeighbVtx  Y )  <->  Y  e.  ( G NeighbVtx  X ) ) )
97, 8syl 17 . . 3  |-  ( ph  ->  ( X  e.  ( G NeighbVtx  Y )  <->  Y  e.  ( G NeighbVtx  X ) ) )
106, 9mtbird 315 . 2  |-  ( ph  ->  -.  X  e.  ( G NeighbVtx  Y ) )
11 frgrncvvdeq.ny . . . 4  |-  N  =  ( G NeighbVtx  Y )
12 neleq2 2903 . . . 4  |-  ( N  =  ( G NeighbVtx  Y )  ->  ( X  e/  N 
<->  X  e/  ( G NeighbVtx  Y ) ) )
1311, 12ax-mp 5 . . 3  |-  ( X  e/  N  <->  X  e/  ( G NeighbVtx  Y ) )
14 df-nel 2898 . . 3  |-  ( X  e/  ( G NeighbVtx  Y )  <->  -.  X  e.  ( G NeighbVtx  Y ) )
1513, 14bitri 264 . 2  |-  ( X  e/  N  <->  -.  X  e.  ( G NeighbVtx  Y )
)
1610, 15sylibr 224 1  |-  ( ph  ->  X  e/  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   {cpr 4179    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228
This theorem is referenced by:  frgrncvvdeqlem7  27169  frgrncvvdeqlem8  27170  frgrncvvdeqlem9  27171
  Copyright terms: Public domain W3C validator