MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeq Structured version   Visualization version   Unicode version

Theorem frgrncvvdeq 27173
Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v  |-  V  =  (Vtx `  G )
frgrncvvdeq.d  |-  D  =  (VtxDeg `  G )
Assertion
Ref Expression
frgrncvvdeq  |-  ( G  e. FriendGraph  ->  A. x  e.  V  A. y  e.  ( V  \  { x }
) ( y  e/  ( G NeighbVtx  x )  -> 
( D `  x
)  =  ( D `
 y ) ) )
Distinct variable groups:    x, G, y    x, V, y
Allowed substitution hints:    D( x, y)

Proof of Theorem frgrncvvdeq
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( G NeighbVtx  x )  e.  _V )
2 frgrncvvdeq.v . . . . . . 7  |-  V  =  (Vtx `  G )
3 eqid 2622 . . . . . . 7  |-  (Edg `  G )  =  (Edg
`  G )
4 eqid 2622 . . . . . . 7  |-  ( G NeighbVtx  x )  =  ( G NeighbVtx  x )
5 eqid 2622 . . . . . . 7  |-  ( G NeighbVtx  y )  =  ( G NeighbVtx  y )
6 simpl 473 . . . . . . . 8  |-  ( ( x  e.  V  /\  y  e.  ( V  \  { x } ) )  ->  x  e.  V )
76ad2antlr 763 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  x  e.  V )
8 eldifi 3732 . . . . . . . . 9  |-  ( y  e.  ( V  \  { x } )  ->  y  e.  V
)
98adantl 482 . . . . . . . 8  |-  ( ( x  e.  V  /\  y  e.  ( V  \  { x } ) )  ->  y  e.  V )
109ad2antlr 763 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  y  e.  V )
11 eldif 3584 . . . . . . . . . 10  |-  ( y  e.  ( V  \  { x } )  <-> 
( y  e.  V  /\  -.  y  e.  {
x } ) )
12 velsn 4193 . . . . . . . . . . . . 13  |-  ( y  e.  { x }  <->  y  =  x )
1312biimpri 218 . . . . . . . . . . . 12  |-  ( y  =  x  ->  y  e.  { x } )
1413equcoms 1947 . . . . . . . . . . 11  |-  ( x  =  y  ->  y  e.  { x } )
1514necon3bi 2820 . . . . . . . . . 10  |-  ( -.  y  e.  { x }  ->  x  =/=  y
)
1611, 15simplbiim 659 . . . . . . . . 9  |-  ( y  e.  ( V  \  { x } )  ->  x  =/=  y
)
1716adantl 482 . . . . . . . 8  |-  ( ( x  e.  V  /\  y  e.  ( V  \  { x } ) )  ->  x  =/=  y )
1817ad2antlr 763 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  x  =/=  y )
19 simpr 477 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  y  e/  ( G NeighbVtx  x ) )
20 simpl 473 . . . . . . . 8  |-  ( ( G  e. FriendGraph  /\  ( x  e.  V  /\  y  e.  ( V  \  {
x } ) ) )  ->  G  e. FriendGraph  )
2120adantr 481 . . . . . . 7  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  G  e. FriendGraph  )
22 eqid 2622 . . . . . . 7  |-  ( a  e.  ( G NeighbVtx  x ) 
|->  ( iota_ b  e.  ( G NeighbVtx  y ) { a ,  b }  e.  (Edg `  G ) ) )  =  ( a  e.  ( G NeighbVtx  x ) 
|->  ( iota_ b  e.  ( G NeighbVtx  y ) { a ,  b }  e.  (Edg `  G ) ) )
232, 3, 4, 5, 7, 10, 18, 19, 21, 22frgrncvvdeqlem10 27172 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( a  e.  ( G NeighbVtx  x )  |->  ( iota_ b  e.  ( G NeighbVtx  y ) { a ,  b }  e.  (Edg `  G ) ) ) : ( G NeighbVtx  x ) -1-1-onto-> ( G NeighbVtx  y )
)
241, 23hasheqf1od 13144 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( # `  ( G NeighbVtx  x ) )  =  ( # `  ( G NeighbVtx  y ) ) )
25 frgrusgr 27124 . . . . . . . 8  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
2625, 6anim12i 590 . . . . . . 7  |-  ( ( G  e. FriendGraph  /\  ( x  e.  V  /\  y  e.  ( V  \  {
x } ) ) )  ->  ( G  e. USGraph  /\  x  e.  V
) )
2726adantr 481 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( G  e. USGraph  /\  x  e.  V
) )
282hashnbusgrvd 26424 . . . . . 6  |-  ( ( G  e. USGraph  /\  x  e.  V )  ->  ( # `
 ( G NeighbVtx  x ) )  =  ( (VtxDeg `  G ) `  x
) )
2927, 28syl 17 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( # `  ( G NeighbVtx  x ) )  =  ( (VtxDeg `  G
) `  x )
)
3025, 9anim12i 590 . . . . . . 7  |-  ( ( G  e. FriendGraph  /\  ( x  e.  V  /\  y  e.  ( V  \  {
x } ) ) )  ->  ( G  e. USGraph  /\  y  e.  V
) )
3130adantr 481 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( G  e. USGraph  /\  y  e.  V
) )
322hashnbusgrvd 26424 . . . . . 6  |-  ( ( G  e. USGraph  /\  y  e.  V )  ->  ( # `
 ( G NeighbVtx  y ) )  =  ( (VtxDeg `  G ) `  y
) )
3331, 32syl 17 . . . . 5  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( # `  ( G NeighbVtx  y ) )  =  ( (VtxDeg `  G
) `  y )
)
3424, 29, 333eqtr3d 2664 . . . 4  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( (VtxDeg `  G ) `  x
)  =  ( (VtxDeg `  G ) `  y
) )
35 frgrncvvdeq.d . . . . 5  |-  D  =  (VtxDeg `  G )
3635fveq1i 6192 . . . 4  |-  ( D `
 x )  =  ( (VtxDeg `  G
) `  x )
3735fveq1i 6192 . . . 4  |-  ( D `
 y )  =  ( (VtxDeg `  G
) `  y )
3834, 36, 373eqtr4g 2681 . . 3  |-  ( ( ( G  e. FriendGraph  /\  (
x  e.  V  /\  y  e.  ( V  \  { x } ) ) )  /\  y  e/  ( G NeighbVtx  x )
)  ->  ( D `  x )  =  ( D `  y ) )
3938ex 450 . 2  |-  ( ( G  e. FriendGraph  /\  ( x  e.  V  /\  y  e.  ( V  \  {
x } ) ) )  ->  ( y  e/  ( G NeighbVtx  x )  ->  ( D `  x
)  =  ( D `
 y ) ) )
4039ralrimivva 2971 1  |-  ( G  e. FriendGraph  ->  A. x  e.  V  A. y  e.  ( V  \  { x }
) ( y  e/  ( G NeighbVtx  x )  -> 
( D `  x
)  =  ( D `
 y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   _Vcvv 3200    \ cdif 3571   {csn 4177   {cpr 4179    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224  VtxDegcvtxdg 26361   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-vtxdg 26362  df-frgr 27121
This theorem is referenced by:  frgrwopreglem4a  27174
  Copyright terms: Public domain W3C validator