MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem8 Structured version   Visualization version   Unicode version

Theorem frgrncvvdeqlem8 27170
Description: Lemma 8 for frgrncvvdeq 27173. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1  |-  V  =  (Vtx `  G )
frgrncvvdeq.e  |-  E  =  (Edg `  G )
frgrncvvdeq.nx  |-  D  =  ( G NeighbVtx  X )
frgrncvvdeq.ny  |-  N  =  ( G NeighbVtx  Y )
frgrncvvdeq.x  |-  ( ph  ->  X  e.  V )
frgrncvvdeq.y  |-  ( ph  ->  Y  e.  V )
frgrncvvdeq.ne  |-  ( ph  ->  X  =/=  Y )
frgrncvvdeq.xy  |-  ( ph  ->  Y  e/  D )
frgrncvvdeq.f  |-  ( ph  ->  G  e. FriendGraph  )
frgrncvvdeq.a  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )
Assertion
Ref Expression
frgrncvvdeqlem8  |-  ( ph  ->  A : D -1-1-> N
)
Distinct variable groups:    y, D    y, G    y, V    y, Y    ph, y, x    y, E    y, N    x, D    x, N    ph, x    x, E
Allowed substitution hints:    A( x, y)    G( x)    V( x)    X( x, y)    Y( x)

Proof of Theorem frgrncvvdeqlem8
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3  |-  V  =  (Vtx `  G )
2 frgrncvvdeq.e . . 3  |-  E  =  (Edg `  G )
3 frgrncvvdeq.nx . . 3  |-  D  =  ( G NeighbVtx  X )
4 frgrncvvdeq.ny . . 3  |-  N  =  ( G NeighbVtx  Y )
5 frgrncvvdeq.x . . 3  |-  ( ph  ->  X  e.  V )
6 frgrncvvdeq.y . . 3  |-  ( ph  ->  Y  e.  V )
7 frgrncvvdeq.ne . . 3  |-  ( ph  ->  X  =/=  Y )
8 frgrncvvdeq.xy . . 3  |-  ( ph  ->  Y  e/  D )
9 frgrncvvdeq.f . . 3  |-  ( ph  ->  G  e. FriendGraph  )
10 frgrncvvdeq.a . . 3  |-  A  =  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 27166 . 2  |-  ( ph  ->  A : D --> N )
12 simpr 477 . . 3  |-  ( (
ph  /\  A : D
--> N )  ->  A : D --> N )
13 ffvelrn 6357 . . . . . . . . 9  |-  ( ( A : D --> N  /\  u  e.  D )  ->  ( A `  u
)  e.  N )
1413ad2ant2lr 784 . . . . . . . 8  |-  ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D
) )  ->  ( A `  u )  e.  N )
1514adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D ) )  /\  ( A `  u )  =  ( A `  w ) )  -> 
( A `  u
)  e.  N )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 27163 . . . . . . . . . . 11  |-  ( ph  ->  X  e/  N )
17 preq1 4268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  u  ->  { x ,  y }  =  { u ,  y } )
1817eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  u  ->  ( { x ,  y }  e.  E  <->  { u ,  y }  e.  E ) )
1918riotabidv 6613 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  u  ->  ( iota_ y  e.  N  {
x ,  y }  e.  E )  =  ( iota_ y  e.  N  { u ,  y }  e.  E ) )
2019cbvmptv 4750 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )  =  ( u  e.  D  |->  ( iota_ y  e.  N  { u ,  y }  e.  E ) )
2110, 20eqtri 2644 . . . . . . . . . . . . . . . . 17  |-  A  =  ( u  e.  D  |->  ( iota_ y  e.  N  { u ,  y }  e.  E ) )
221, 2, 3, 4, 5, 6, 7, 8, 9, 21frgrncvvdeqlem6 27168 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  D )  ->  { u ,  ( A `  u ) }  e.  E )
23 preq1 4268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  { x ,  y }  =  { w ,  y } )
2423eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  ( { x ,  y }  e.  E  <->  { w ,  y }  e.  E ) )
2524riotabidv 6613 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  ( iota_ y  e.  N  {
x ,  y }  e.  E )  =  ( iota_ y  e.  N  { w ,  y }  e.  E ) )
2625cbvmptv 4750 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  D  |->  ( iota_ y  e.  N  { x ,  y }  e.  E ) )  =  ( w  e.  D  |->  ( iota_ y  e.  N  { w ,  y }  e.  E ) )
2710, 26eqtri 2644 . . . . . . . . . . . . . . . . 17  |-  A  =  ( w  e.  D  |->  ( iota_ y  e.  N  { w ,  y }  e.  E ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 27frgrncvvdeqlem6 27168 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  D )  ->  { w ,  ( A `  w ) }  e.  E )
2922, 28anim12dan 882 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  D  /\  w  e.  D ) )  -> 
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  w ) }  e.  E ) )
30 preq2 4269 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A `  w )  =  ( A `  u )  ->  { w ,  ( A `  w ) }  =  { w ,  ( A `  u ) } )
3130eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A `  w )  =  ( A `  u )  ->  ( { w ,  ( A `  w ) }  e.  E  <->  { w ,  ( A `  u ) }  e.  E ) )
3231anbi2d 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A `  w )  =  ( A `  u )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  w ) }  e.  E )  <-> 
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E ) ) )
3332eqcoms 2630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A `  u )  =  ( A `  w )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  w ) }  e.  E )  <-> 
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E ) ) )
3433biimpa 501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  u
)  =  ( A `
 w )  /\  ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `
 w ) }  e.  E ) )  ->  ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `  u
) }  e.  E
) )
35 df-ne 2795 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =/=  w  <->  -.  u  =  w )
362, 3frgrnbnb 27157 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e. FriendGraph  /\  ( u  e.  D  /\  w  e.  D )  /\  u  =/=  w )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E )  ->  ( A `  u )  =  X ) )
379, 36syl3an1 1359 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( u  e.  D  /\  w  e.  D )  /\  u  =/=  w )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E )  ->  ( A `  u )  =  X ) )
38373expa 1265 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
u  e.  D  /\  w  e.  D )
)  /\  u  =/=  w )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E )  ->  ( A `  u )  =  X ) )
39 df-nel 2898 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( X  e/  N  <->  -.  X  e.  N )
40 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A `  u )  =  X  ->  (
( A `  u
)  e.  N  <->  X  e.  N ) )
4140biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A `  u
)  =  X  /\  ( A `  u )  e.  N )  ->  X  e.  N )
4241pm2.24d 147 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A `  u
)  =  X  /\  ( A `  u )  e.  N )  -> 
( -.  X  e.  N  ->  u  =  w ) )
4342expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A `  u )  e.  N  ->  (
( A `  u
)  =  X  -> 
( -.  X  e.  N  ->  u  =  w ) ) )
4443com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  X  e.  N  -> 
( ( A `  u )  =  X  ->  ( ( A `
 u )  e.  N  ->  u  =  w ) ) )
4539, 44sylbi 207 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( X  e/  N  ->  (
( A `  u
)  =  X  -> 
( ( A `  u )  e.  N  ->  u  =  w ) ) )
4645com12 32 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A `  u )  =  X  ->  ( X  e/  N  ->  (
( A `  u
)  e.  N  ->  u  =  w )
) )
4738, 46syl6 35 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
u  e.  D  /\  w  e.  D )
)  /\  u  =/=  w )  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E )  ->  ( X  e/  N  ->  ( ( A `
 u )  e.  N  ->  u  =  w ) ) ) )
4847expcom 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =/=  w  ->  (
( ph  /\  (
u  e.  D  /\  w  e.  D )
)  ->  ( ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `
 u ) }  e.  E )  -> 
( X  e/  N  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) )
4948com23 86 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =/=  w  ->  (
( { u ,  ( A `  u
) }  e.  E  /\  { w ,  ( A `  u ) }  e.  E )  ->  ( ( ph  /\  ( u  e.  D  /\  w  e.  D
) )  ->  ( X  e/  N  ->  (
( A `  u
)  e.  N  ->  u  =  w )
) ) ) )
5035, 49sylbir 225 . . . . . . . . . . . . . . . . . 18  |-  ( -.  u  =  w  -> 
( ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `  u
) }  e.  E
)  ->  ( ( ph  /\  ( u  e.  D  /\  w  e.  D ) )  -> 
( X  e/  N  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) )
5134, 50syl5com 31 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A `  u
)  =  ( A `
 w )  /\  ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `
 w ) }  e.  E ) )  ->  ( -.  u  =  w  ->  ( (
ph  /\  ( u  e.  D  /\  w  e.  D ) )  -> 
( X  e/  N  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) )
5251expcom 451 . . . . . . . . . . . . . . . 16  |-  ( ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `
 w ) }  e.  E )  -> 
( ( A `  u )  =  ( A `  w )  ->  ( -.  u  =  w  ->  ( (
ph  /\  ( u  e.  D  /\  w  e.  D ) )  -> 
( X  e/  N  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) ) )
5352com24 95 . . . . . . . . . . . . . . 15  |-  ( ( { u ,  ( A `  u ) }  e.  E  /\  { w ,  ( A `
 w ) }  e.  E )  -> 
( ( ph  /\  ( u  e.  D  /\  w  e.  D
) )  ->  ( -.  u  =  w  ->  ( ( A `  u )  =  ( A `  w )  ->  ( X  e/  N  ->  ( ( A `
 u )  e.  N  ->  u  =  w ) ) ) ) ) )
5429, 53mpcom 38 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  D  /\  w  e.  D ) )  -> 
( -.  u  =  w  ->  ( ( A `  u )  =  ( A `  w )  ->  ( X  e/  N  ->  (
( A `  u
)  e.  N  ->  u  =  w )
) ) ) )
5554ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( u  e.  D  /\  w  e.  D )  ->  ( -.  u  =  w  ->  ( ( A `  u )  =  ( A `  w )  ->  ( X  e/  N  ->  ( ( A `
 u )  e.  N  ->  u  =  w ) ) ) ) ) )
5655com3r 87 . . . . . . . . . . . 12  |-  ( -.  u  =  w  -> 
( ph  ->  ( ( u  e.  D  /\  w  e.  D )  ->  ( ( A `  u )  =  ( A `  w )  ->  ( X  e/  N  ->  ( ( A `
 u )  e.  N  ->  u  =  w ) ) ) ) ) )
5756com15 101 . . . . . . . . . . 11  |-  ( X  e/  N  ->  ( ph  ->  ( ( u  e.  D  /\  w  e.  D )  ->  (
( A `  u
)  =  ( A `
 w )  -> 
( -.  u  =  w  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) ) )
5816, 57mpcom 38 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  e.  D  /\  w  e.  D )  ->  (
( A `  u
)  =  ( A `
 w )  -> 
( -.  u  =  w  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) )
5958expd 452 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  D  ->  ( w  e.  D  ->  ( ( A `  u )  =  ( A `  w )  ->  ( -.  u  =  w  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) ) )
6059adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A : D
--> N )  ->  (
u  e.  D  -> 
( w  e.  D  ->  ( ( A `  u )  =  ( A `  w )  ->  ( -.  u  =  w  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) ) ) ) )
6160imp42 620 . . . . . . 7  |-  ( ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D ) )  /\  ( A `  u )  =  ( A `  w ) )  -> 
( -.  u  =  w  ->  ( ( A `  u )  e.  N  ->  u  =  w ) ) )
6215, 61mpid 44 . . . . . 6  |-  ( ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D ) )  /\  ( A `  u )  =  ( A `  w ) )  -> 
( -.  u  =  w  ->  u  =  w ) )
6362pm2.18d 124 . . . . 5  |-  ( ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D ) )  /\  ( A `  u )  =  ( A `  w ) )  ->  u  =  w )
6463ex 450 . . . 4  |-  ( ( ( ph  /\  A : D --> N )  /\  ( u  e.  D  /\  w  e.  D
) )  ->  (
( A `  u
)  =  ( A `
 w )  ->  u  =  w )
)
6564ralrimivva 2971 . . 3  |-  ( (
ph  /\  A : D
--> N )  ->  A. u  e.  D  A. w  e.  D  ( ( A `  u )  =  ( A `  w )  ->  u  =  w ) )
66 dff13 6512 . . 3  |-  ( A : D -1-1-> N  <->  ( A : D --> N  /\  A. u  e.  D  A. w  e.  D  (
( A `  u
)  =  ( A `
 w )  ->  u  =  w )
) )
6712, 65, 66sylanbrc 698 . 2  |-  ( (
ph  /\  A : D
--> N )  ->  A : D -1-1-> N )
6811, 67mpdan 702 1  |-  ( ph  ->  A : D -1-1-> N
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   {cpr 4179    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   iota_crio 6610  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-frgr 27121
This theorem is referenced by:  frgrncvvdeqlem10  27172
  Copyright terms: Public domain W3C validator