| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbval | Structured version Visualization version Unicode version | ||
| Description: Value of the greatest
lower bound function of a poset. Out-of-domain
arguments (those not satisfying |
| Ref | Expression |
|---|---|
| glbval.b |
|
| glbval.l |
|
| glbval.g |
|
| glbval.p |
|
| glbva.k |
|
| glbval.ss |
|
| Ref | Expression |
|---|---|
| glbval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbval.b |
. . . . 5
| |
| 2 | glbval.l |
. . . . 5
| |
| 3 | glbval.g |
. . . . 5
| |
| 4 | biid 251 |
. . . . 5
| |
| 5 | glbva.k |
. . . . . 6
| |
| 6 | 5 | adantr 481 |
. . . . 5
|
| 7 | 1, 2, 3, 4, 6 | glbfval 16991 |
. . . 4
|
| 8 | 7 | fveq1d 6193 |
. . 3
|
| 9 | glbval.p |
. . . . . 6
| |
| 10 | simpr 477 |
. . . . . 6
| |
| 11 | 1, 2, 3, 9, 6, 10 | glbeu 16996 |
. . . . 5
|
| 12 | raleq 3138 |
. . . . . . . . . 10
| |
| 13 | raleq 3138 |
. . . . . . . . . . . 12
| |
| 14 | 13 | imbi1d 331 |
. . . . . . . . . . 11
|
| 15 | 14 | ralbidv 2986 |
. . . . . . . . . 10
|
| 16 | 12, 15 | anbi12d 747 |
. . . . . . . . 9
|
| 17 | 16, 9 | syl6bbr 278 |
. . . . . . . 8
|
| 18 | 17 | reubidv 3126 |
. . . . . . 7
|
| 19 | 18 | elabg 3351 |
. . . . . 6
|
| 20 | 19 | adantl 482 |
. . . . 5
|
| 21 | 11, 20 | mpbird 247 |
. . . 4
|
| 22 | fvres 6207 |
. . . 4
| |
| 23 | 21, 22 | syl 17 |
. . 3
|
| 24 | glbval.ss |
. . . . . 6
| |
| 25 | 24 | adantr 481 |
. . . . 5
|
| 26 | fvex 6201 |
. . . . . . 7
| |
| 27 | 1, 26 | eqeltri 2697 |
. . . . . 6
|
| 28 | 27 | elpw2 4828 |
. . . . 5
|
| 29 | 25, 28 | sylibr 224 |
. . . 4
|
| 30 | 17 | riotabidv 6613 |
. . . . 5
|
| 31 | eqid 2622 |
. . . . 5
| |
| 32 | riotaex 6615 |
. . . . 5
| |
| 33 | 30, 31, 32 | fvmpt 6282 |
. . . 4
|
| 34 | 29, 33 | syl 17 |
. . 3
|
| 35 | 8, 23, 34 | 3eqtrd 2660 |
. 2
|
| 36 | ndmfv 6218 |
. . . 4
| |
| 37 | 36 | adantl 482 |
. . 3
|
| 38 | 1, 2, 3, 9, 5 | glbeldm 16994 |
. . . . . . 7
|
| 39 | 38 | biimprd 238 |
. . . . . 6
|
| 40 | 24, 39 | mpand 711 |
. . . . 5
|
| 41 | 40 | con3dimp 457 |
. . . 4
|
| 42 | riotaund 6647 |
. . . 4
| |
| 43 | 41, 42 | syl 17 |
. . 3
|
| 44 | 37, 43 | eqtr4d 2659 |
. 2
|
| 45 | 35, 44 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-glb 16975 |
| This theorem is referenced by: glbcl 16998 glbprop 16999 meetval2 17023 isglbd 17117 tosglb 29670 glb0N 34480 glbconN 34663 |
| Copyright terms: Public domain | W3C validator |