MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcnv Structured version   Visualization version   Unicode version

Theorem grpinvcnv 17483
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvcnv  |-  ( G  e.  Grp  ->  `' N  =  N )

Proof of Theorem grpinvcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( x  e.  B  |->  ( N `
 x ) )  =  ( x  e.  B  |->  ( N `  x ) )
2 grpinvinv.b . . . . 5  |-  B  =  ( Base `  G
)
3 grpinvinv.n . . . . 5  |-  N  =  ( invg `  G )
42, 3grpinvcl 17467 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( N `  x
)  e.  B )
52, 3grpinvcl 17467 . . . 4  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( N `  y
)  e.  B )
6 eqid 2622 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
7 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
82, 6, 7, 3grpinvid1 17470 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
983com23 1271 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
102, 6, 7, 3grpinvid2 17471 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  x )  =  y  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
119, 10bitr4d 271 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( N `  x
)  =  y ) )
12113expb 1266 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( N `  y
)  =  x  <->  ( N `  x )  =  y ) )
13 eqcom 2629 . . . . 5  |-  ( x  =  ( N `  y )  <->  ( N `  y )  =  x )
14 eqcom 2629 . . . . 5  |-  ( y  =  ( N `  x )  <->  ( N `  x )  =  y )
1512, 13, 143bitr4g 303 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  =  ( N `
 y )  <->  y  =  ( N `  x ) ) )
161, 4, 5, 15f1ocnv2d 6886 . . 3  |-  ( G  e.  Grp  ->  (
( x  e.  B  |->  ( N `  x
) ) : B -1-1-onto-> B  /\  `' ( x  e.  B  |->  ( N `  x ) )  =  ( y  e.  B  |->  ( N `  y
) ) ) )
1716simprd 479 . 2  |-  ( G  e.  Grp  ->  `' ( x  e.  B  |->  ( N `  x
) )  =  ( y  e.  B  |->  ( N `  y ) ) )
182, 3grpinvf 17466 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
1918feqmptd 6249 . . 3  |-  ( G  e.  Grp  ->  N  =  ( x  e.  B  |->  ( N `  x ) ) )
2019cnveqd 5298 . 2  |-  ( G  e.  Grp  ->  `' N  =  `' (
x  e.  B  |->  ( N `  x ) ) )
2118feqmptd 6249 . 2  |-  ( G  e.  Grp  ->  N  =  ( y  e.  B  |->  ( N `  y ) ) )
2217, 20, 213eqtr4d 2666 1  |-  ( G  e.  Grp  ->  `' N  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    |-> cmpt 4729   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  grpinvf1o  17485  grpinvhmeo  21890
  Copyright terms: Public domain W3C validator