MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Visualization version   Unicode version

Theorem gsumress 17276
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b  |-  B  =  ( Base `  G
)
gsumress.o  |-  .+  =  ( +g  `  G )
gsumress.h  |-  H  =  ( Gs  S )
gsumress.g  |-  ( ph  ->  G  e.  V )
gsumress.a  |-  ( ph  ->  A  e.  X )
gsumress.s  |-  ( ph  ->  S  C_  B )
gsumress.f  |-  ( ph  ->  F : A --> S )
gsumress.z  |-  ( ph  ->  .0.  e.  S )
gsumress.c  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
Assertion
Ref Expression
gsumress  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    x, B    x, G    ph, x    x, S    x, H    x,  .+    x,  .0.
Allowed substitution hints:    A( x)    F( x)    V( x)    X( x)

Proof of Theorem gsumress
Dummy variables  f  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.s . . . . . . . . 9  |-  ( ph  ->  S  C_  B )
2 gsumress.z . . . . . . . . 9  |-  ( ph  ->  .0.  e.  S )
31, 2sseldd 3604 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
4 gsumress.c . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
54ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
6 oveq1 6657 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
y  .+  x )  =  (  .0.  .+  x
) )
76eqeq1d 2624 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( y  .+  x
)  =  x  <->  (  .0.  .+  x )  =  x ) )
8 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
x  .+  y )  =  ( x  .+  .0.  ) )
98eqeq1d 2624 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( x  .+  y
)  =  x  <->  ( x  .+  .0.  )  =  x ) )
107, 9anbi12d 747 . . . . . . . . . 10  |-  ( y  =  .0.  ->  (
( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
1110ralbidv 2986 . . . . . . . . 9  |-  ( y  =  .0.  ->  ( A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
1211elrab 3363 . . . . . . . 8  |-  (  .0. 
e.  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }  <->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x 
.+  .0.  )  =  x ) ) )
133, 5, 12sylanbrc 698 . . . . . . 7  |-  ( ph  ->  .0.  e.  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
1413snssd 4340 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } )
15 gsumress.g . . . . . . . 8  |-  ( ph  ->  G  e.  V )
16 gsumress.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
17 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
18 gsumress.o . . . . . . . . 9  |-  .+  =  ( +g  `  G )
19 eqid 2622 . . . . . . . . 9  |-  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) }  =  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }
2016, 17, 18, 19mgmidsssn0 17269 . . . . . . . 8  |-  ( G  e.  V  ->  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } 
C_  { ( 0g
`  G ) } )
2115, 20syl 17 . . . . . . 7  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  { ( 0g `  G ) } )
2221, 13sseldd 3604 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { ( 0g `  G ) } )
23 elsni 4194 . . . . . . . . 9  |-  (  .0. 
e.  { ( 0g
`  G ) }  ->  .0.  =  ( 0g `  G ) )
2422, 23syl 17 . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
2524sneqd 4189 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  G ) } )
2621, 25sseqtr4d 3642 . . . . . 6  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  {  .0.  } )
2714, 26eqssd 3620 . . . . 5  |-  ( ph  ->  {  .0.  }  =  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } )
281sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
2928, 4syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
3029ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
3110ralbidv 2986 . . . . . . . . . 10  |-  ( y  =  .0.  ->  ( A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
3231elrab 3363 . . . . . . . . 9  |-  (  .0. 
e.  { y  e.  S  |  A. x  e.  S  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }  <->  (  .0.  e.  S  /\  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x 
.+  .0.  )  =  x ) ) )
332, 30, 32sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { y  e.  S  |  A. x  e.  S  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
34 gsumress.h . . . . . . . . . . 11  |-  H  =  ( Gs  S )
3534, 16ressbas2 15931 . . . . . . . . . 10  |-  ( S 
C_  B  ->  S  =  ( Base `  H
) )
361, 35syl 17 . . . . . . . . 9  |-  ( ph  ->  S  =  ( Base `  H ) )
37 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( Base `  H )  e.  _V
3836, 37syl6eqel 2709 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  _V )
3934, 18ressplusg 15993 . . . . . . . . . . . . . 14  |-  ( S  e.  _V  ->  .+  =  ( +g  `  H ) )
4038, 39syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  .+  =  ( +g  `  H ) )
4140oveqd 6667 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  H
) x ) )
4241eqeq1d 2624 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  .+  x )  =  x  <-> 
( y ( +g  `  H ) x )  =  x ) )
4340oveqd 6667 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
4443eqeq1d 2624 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  .+  y )  =  x  <-> 
( x ( +g  `  H ) y )  =  x ) )
4542, 44anbi12d 747 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  ( (
y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4636, 45raleqbidv 3152 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  S  ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4736, 46rabeqbidv 3195 . . . . . . . 8  |-  ( ph  ->  { y  e.  S  |  A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
4833, 47eleqtrd 2703 . . . . . . 7  |-  ( ph  ->  .0.  e.  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
4948snssd 4340 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
50 ovex 6678 . . . . . . . . . 10  |-  ( Gs  S )  e.  _V
5134, 50eqeltri 2697 . . . . . . . . 9  |-  H  e. 
_V
5251a1i 11 . . . . . . . 8  |-  ( ph  ->  H  e.  _V )
53 eqid 2622 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
54 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  H )  =  ( 0g `  H
)
55 eqid 2622 . . . . . . . . 9  |-  ( +g  `  H )  =  ( +g  `  H )
56 eqid 2622 . . . . . . . . 9  |-  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }
5753, 54, 55, 56mgmidsssn0 17269 . . . . . . . 8  |-  ( H  e.  _V  ->  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  C_  { ( 0g `  H
) } )
5852, 57syl 17 . . . . . . 7  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  { ( 0g `  H ) } )
5958, 48sseldd 3604 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { ( 0g `  H ) } )
60 elsni 4194 . . . . . . . . 9  |-  (  .0. 
e.  { ( 0g
`  H ) }  ->  .0.  =  ( 0g `  H ) )
6159, 60syl 17 . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  H ) )
6261sneqd 4189 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  H ) } )
6358, 62sseqtr4d 3642 . . . . . 6  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  {  .0.  } )
6449, 63eqssd 3620 . . . . 5  |-  ( ph  ->  {  .0.  }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) } )
6527, 64eqtr3d 2658 . . . 4  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
6665sseq2d 3633 . . 3  |-  ( ph  ->  ( ran  F  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  <->  ran  F  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) )
6724, 61eqtr3d 2658 . . 3  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
6840seqeq2d 12808 . . . . . . . . . 10  |-  ( ph  ->  seq m (  .+  ,  F )  =  seq m ( ( +g  `  H ) ,  F
) )
6968fveq1d 6193 . . . . . . . . 9  |-  ( ph  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
7069eqeq2d 2632 . . . . . . . 8  |-  ( ph  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
7170anbi2d 740 . . . . . . 7  |-  ( ph  ->  ( ( A  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
7271rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7372exbidv 1850 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7473iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  =  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7540seqeq2d 12808 . . . . . . . . 9  |-  ( ph  ->  seq 1 (  .+  ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) )
7675fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
7776eqeq2d 2632 . . . . . . 7  |-  ( ph  ->  ( z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  <-> 
z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) )
7877anbi2d 740 . . . . . 6  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  <->  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) ) ) )
7978exbidv 1850 . . . . 5  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  <->  E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) ) ) )
8079iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) )  =  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) )
8174, 80ifeq12d 4106 . . 3  |-  ( ph  ->  if ( A  e. 
ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) )  =  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) )
8266, 67, 81ifbieq12d 4113 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ,  ( 0g `  G ) ,  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) ) )  =  if ( ran  F  C_  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } , 
( 0g `  H
) ,  if ( A  e.  ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
8327difeq2d 3728 . . . 4  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } ) )
8483imaeq2d 5466 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( `' F "
( _V  \  {
y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ) ) )
85 gsumress.a . . 3  |-  ( ph  ->  A  e.  X )
86 gsumress.f . . . 4  |-  ( ph  ->  F : A --> S )
8786, 1fssd 6057 . . 3  |-  ( ph  ->  F : A --> B )
8816, 17, 18, 19, 84, 15, 85, 87gsumval 17271 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ,  ( 0g `  G ) ,  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
8964difeq2d 3728 . . . 4  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) )
9089imaeq2d 5466 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( `' F "
( _V  \  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) ) )
9136feq3d 6032 . . . 4  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
9286, 91mpbid 222 . . 3  |-  ( ph  ->  F : A --> ( Base `  H ) )
9353, 54, 55, 56, 90, 52, 85, 92gsumval 17271 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  if ( ran  F  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } , 
( 0g `  H
) ,  if ( A  e.  ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
9482, 88, 933eqtr4d 2666 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   iotacio 5849   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1c1 9937   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103
This theorem is referenced by:  gsumsubm  17373  regsumfsum  19814  regsumsupp  19968  frlmgsum  20111  imasdsf1olem  22178  esumpfinvallem  30136  sge0tsms  40597  aacllem  42547
  Copyright terms: Public domain W3C validator