MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Visualization version   Unicode version

Theorem gsumval2 17280
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2622 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . . 4  |-  .+  =  ( +g  `  G )
4 eqid 2622 . . . 4  |-  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }
5 gsumval2.g . . . . 5  |-  ( ph  ->  G  e.  V )
65adantr 481 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  G  e.  V )
7 ovexd 6680 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( M ... N
)  e.  _V )
8 gsumval2.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
9 ffn 6045 . . . . . . 7  |-  ( F : ( M ... N ) --> B  ->  F  Fn  ( M ... N ) )
108, 9syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  ( M ... N ) )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F  Fn  ( M ... N ) )
12 simpr 477 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
13 df-f 5892 . . . . 5  |-  ( F : ( M ... N ) --> { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  <->  ( F  Fn  ( M ... N )  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } ) )
1411, 12, 13sylanbrc 698 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F : ( M ... N ) --> { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
151, 2, 3, 4, 6, 7, 14gsumval1 17277 . . 3  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  ( 0g `  G ) )
16 simpl 473 . . . . . . . . 9  |-  ( ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  ( x  .+  y )  =  y )
1716ralimi 2952 . . . . . . . 8  |-  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  A. y  e.  B  ( x  .+  y )  =  y )
1817a1i 11 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  A. y  e.  B  ( x  .+  y )  =  y ) )
1918ss2rabi 3684 . . . . . 6  |-  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { x  e.  B  |  A. y  e.  B  (
x  .+  y )  =  y }
20 fvex 6201 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
2120snid 4208 . . . . . . 7  |-  ( 0g
`  G )  e. 
{ ( 0g `  G ) }
22 fdm 6051 . . . . . . . . . . . . . 14  |-  ( F : ( M ... N ) --> B  ->  dom  F  =  ( M ... N ) )
238, 22syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  ( M ... N ) )
24 gsumval2.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
25 eluzfz1 12348 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
26 ne0i 3921 . . . . . . . . . . . . . 14  |-  ( M  e.  ( M ... N )  ->  ( M ... N )  =/=  (/) )
2724, 25, 263syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... N
)  =/=  (/) )
2823, 27eqnetrd 2861 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =/=  (/) )
29 dm0rn0 5342 . . . . . . . . . . . . 13  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
3029necon3bii 2846 . . . . . . . . . . . 12  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
3128, 30sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  =/=  (/) )
3231adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  ran  F  =/=  (/) )
33 ssn0 3976 . . . . . . . . . 10  |-  ( ( ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  /\  ran  F  =/=  (/) )  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =/=  (/) )
3412, 32, 33syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =/=  (/) )
3534neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  -.  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  (/) )
361, 2, 3, 4mgmidsssn0 17269 . . . . . . . . . . 11  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { ( 0g `  G ) } )
375, 36syl 17 . . . . . . . . . 10  |-  ( ph  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  { ( 0g `  G ) } )
38 sssn 4358 . . . . . . . . . 10  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  { ( 0g `  G ) }  <->  ( { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  (/)  \/  {
x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } ) )
3937, 38sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) }  =  (/)  \/  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  { ( 0g `  G ) } ) )
4039orcanai 952 . . . . . . . 8  |-  ( (
ph  /\  -.  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  (/) )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } )
4135, 40syldan 487 . . . . . . 7  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } )
4221, 41syl5eleqr 2708 . . . . . 6  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( 0g `  G
)  e.  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
4319, 42sseldi 3601 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( 0g `  G
)  e.  { x  e.  B  |  A. y  e.  B  (
x  .+  y )  =  y } )
44 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( 0g `  G )  ->  (
x  .+  y )  =  ( ( 0g
`  G )  .+  y ) )
4544eqeq1d 2624 . . . . . . . 8  |-  ( x  =  ( 0g `  G )  ->  (
( x  .+  y
)  =  y  <->  ( ( 0g `  G )  .+  y )  =  y ) )
4645ralbidv 2986 . . . . . . 7  |-  ( x  =  ( 0g `  G )  ->  ( A. y  e.  B  ( x  .+  y )  =  y  <->  A. y  e.  B  ( ( 0g `  G )  .+  y )  =  y ) )
4746elrab 3363 . . . . . 6  |-  ( ( 0g `  G )  e.  { x  e.  B  |  A. y  e.  B  ( x  .+  y )  =  y }  <->  ( ( 0g
`  G )  e.  B  /\  A. y  e.  B  ( ( 0g `  G )  .+  y )  =  y ) )
48 oveq2 6658 . . . . . . . 8  |-  ( y  =  ( 0g `  G )  ->  (
( 0g `  G
)  .+  y )  =  ( ( 0g
`  G )  .+  ( 0g `  G ) ) )
49 id 22 . . . . . . . 8  |-  ( y  =  ( 0g `  G )  ->  y  =  ( 0g `  G ) )
5048, 49eqeq12d 2637 . . . . . . 7  |-  ( y  =  ( 0g `  G )  ->  (
( ( 0g `  G )  .+  y
)  =  y  <->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) ) )
5150rspcva 3307 . . . . . 6  |-  ( ( ( 0g `  G
)  e.  B  /\  A. y  e.  B  ( ( 0g `  G
)  .+  y )  =  y )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
5247, 51sylbi 207 . . . . 5  |-  ( ( 0g `  G )  e.  { x  e.  B  |  A. y  e.  B  ( x  .+  y )  =  y }  ->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5343, 52syl 17 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
5424adantr 481 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  N  e.  ( ZZ>= `  M ) )
5537ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { ( 0g `  G ) } )
5614ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )
5755, 56sseldd 3604 . . . . 5  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  e.  { ( 0g `  G ) } )
58 elsni 4194 . . . . 5  |-  ( ( F `  z )  e.  { ( 0g
`  G ) }  ->  ( F `  z )  =  ( 0g `  G ) )
5957, 58syl 17 . . . 4  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  =  ( 0g `  G ) )
6053, 54, 59seqid3 12845 . . 3  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( 0g
`  G ) )
6115, 60eqtr4d 2659 . 2  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
625adantr 481 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  G  e.  V )
6324adantr 481 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  N  e.  ( ZZ>= `  M ) )
648adantr 481 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F : ( M ... N ) --> B )
65 simpr 477 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  -.  ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
661, 3, 62, 63, 64, 4, 65gsumval2a 17279 . 2  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
6761, 66pm2.61dan 832 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-gsum 16103
This theorem is referenced by:  gsumprval  17281  gsumwsubmcl  17375  gsumws1  17376  gsumccat  17378  gsumwmhm  17382  gsumval3  18308  gsummptfzcl  18368  gsumncl  30614  gsumnunsn  30615
  Copyright terms: Public domain W3C validator