MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf2 Structured version   Visualization version   Unicode version

Theorem hausflf2 21802
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x  |-  X  = 
U. J
Assertion
Ref Expression
hausflf2  |-  ( ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  ( ( J  fLimf  L ) `  F )  =/=  (/) )  ->  (
( J  fLimf  L ) `
 F )  ~~  1o )

Proof of Theorem hausflf2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . 3  |-  ( ( ( J  fLimf  L ) `
 F )  =/=  (/) 
<->  E. x  x  e.  ( ( J  fLimf  L ) `  F ) )
21biimpi 206 . 2  |-  ( ( ( J  fLimf  L ) `
 F )  =/=  (/)  ->  E. x  x  e.  ( ( J  fLimf  L ) `  F ) )
3 hausflf.x . . 3  |-  X  = 
U. J
43hausflf 21801 . 2  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  E* x  x  e.  (
( J  fLimf  L ) `
 F ) )
5 euen1b 8027 . . . 4  |-  ( ( ( J  fLimf  L ) `
 F )  ~~  1o 
<->  E! x  x  e.  ( ( J  fLimf  L ) `  F ) )
6 eu5 2496 . . . 4  |-  ( E! x  x  e.  ( ( J  fLimf  L ) `
 F )  <->  ( E. x  x  e.  (
( J  fLimf  L ) `
 F )  /\  E* x  x  e.  ( ( J  fLimf  L ) `  F ) ) )
75, 6bitr2i 265 . . 3  |-  ( ( E. x  x  e.  ( ( J  fLimf  L ) `  F )  /\  E* x  x  e.  ( ( J 
fLimf  L ) `  F
) )  <->  ( ( J  fLimf  L ) `  F )  ~~  1o )
87biimpi 206 . 2  |-  ( ( E. x  x  e.  ( ( J  fLimf  L ) `  F )  /\  E* x  x  e.  ( ( J 
fLimf  L ) `  F
) )  ->  (
( J  fLimf  L ) `
 F )  ~~  1o )
92, 4, 8syl2anr 495 1  |-  ( ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  ( ( J  fLimf  L ) `  F )  =/=  (/) )  ->  (
( J  fLimf  L ) `
 F )  ~~  1o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471    =/= wne 2794   (/)c0 3915   U.cuni 4436   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ~~ cen 7952   Hauscha 21112   Filcfil 21649    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-map 7859  df-en 7956  df-fbas 19743  df-top 20699  df-topon 20716  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-flf 21744
This theorem is referenced by:  cnextfvval  21869  cnextcn  21871  cnextfres1  21872
  Copyright terms: Public domain W3C validator