MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf Structured version   Visualization version   Unicode version

Theorem hausflf 21801
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x  |-  X  = 
U. J
Assertion
Ref Expression
hausflf  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  E* x  x  e.  (
( J  fLimf  L ) `
 F ) )
Distinct variable groups:    x, F    x, J    x, L    x, X    x, Y

Proof of Theorem hausflf
StepHypRef Expression
1 hausflimi 21784 . . 3  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) )
213ad2ant1 1082 . 2  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  E* x  x  e.  ( J  fLim  ( ( X 
FilMap  F ) `  L
) ) )
3 haustop 21135 . . . . . 6  |-  ( J  e.  Haus  ->  J  e. 
Top )
4 hausflf.x . . . . . . 7  |-  X  = 
U. J
54toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
63, 5sylib 208 . . . . 5  |-  ( J  e.  Haus  ->  J  e.  (TopOn `  X )
)
7 flfval 21794 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
86, 7syl3an1 1359 . . . 4  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
98eleq2d 2687 . . 3  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
x  e.  ( ( J  fLimf  L ) `  F )  <->  x  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) ) )
109mobidv 2491 . 2  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( E* x  x  e.  ( ( J  fLimf  L ) `  F )  <->  E* x  x  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) ) )
112, 10mpbird 247 1  |-  ( ( J  e.  Haus  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  E* x  x  e.  (
( J  fLimf  L ) `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   E*wmo 2471   U.cuni 4436   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   Hauscha 21112   Filcfil 21649    FilMap cfm 21737    fLim cflim 21738    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-fbas 19743  df-top 20699  df-topon 20716  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-flf 21744
This theorem is referenced by:  hausflf2  21802  cnextfun  21868  haustsms  21939  limcmo  23646
  Copyright terms: Public domain W3C validator