Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl2at Structured version   Visualization version   Unicode version

Theorem hl2at 34691
Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
Hypothesis
Ref Expression
hl2atom.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hl2at  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  p  =/=  q )
Distinct variable groups:    q, p, A    K, p, q

Proof of Theorem hl2at
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . 3  |-  ( lt
`  K )  =  ( lt `  K
)
3 eqid 2622 . . 3  |-  ( 0.
`  K )  =  ( 0. `  K
)
4 eqid 2622 . . 3  |-  ( 1.
`  K )  =  ( 1. `  K
)
51, 2, 3, 4hlhgt2 34675 . 2  |-  ( K  e.  HL  ->  E. x  e.  ( Base `  K
) ( ( 0.
`  K ) ( lt `  K ) x  /\  x ( lt `  K ) ( 1. `  K
) ) )
6 simpl 473 . . . . . 6  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  HL )
7 hlop 34649 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
87adantr 481 . . . . . . 7  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  K  e.  OP )
91, 3op0cl 34471 . . . . . . 7  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
108, 9syl 17 . . . . . 6  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( 0. `  K
)  e.  ( Base `  K ) )
11 simpr 477 . . . . . 6  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  ->  x  e.  ( Base `  K ) )
12 eqid 2622 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
13 hl2atom.a . . . . . . 7  |-  A  =  ( Atoms `  K )
141, 12, 2, 13hlrelat1 34686 . . . . . 6  |-  ( ( K  e.  HL  /\  ( 0. `  K )  e.  ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( ( 0. `  K ) ( lt `  K ) x  ->  E. p  e.  A  ( -.  p ( le `  K ) ( 0.
`  K )  /\  p ( le `  K ) x ) ) )
156, 10, 11, 14syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( ( 0. `  K ) ( lt
`  K ) x  ->  E. p  e.  A  ( -.  p ( le `  K ) ( 0. `  K )  /\  p ( le
`  K ) x ) ) )
161, 4op1cl 34472 . . . . . . 7  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
178, 16syl 17 . . . . . 6  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( 1. `  K
)  e.  ( Base `  K ) )
181, 12, 2, 13hlrelat1 34686 . . . . . 6  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K )  /\  ( 1. `  K )  e.  ( Base `  K
) )  ->  (
x ( lt `  K ) ( 1.
`  K )  ->  E. q  e.  A  ( -.  q ( le `  K ) x  /\  q ( le
`  K ) ( 1. `  K ) ) ) )
1917, 18mpd3an3 1425 . . . . 5  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( x ( lt
`  K ) ( 1. `  K )  ->  E. q  e.  A  ( -.  q ( le `  K ) x  /\  q ( le
`  K ) ( 1. `  K ) ) ) )
2015, 19anim12d 586 . . . 4  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( ( ( 0.
`  K ) ( lt `  K ) x  /\  x ( lt `  K ) ( 1. `  K
) )  ->  ( E. p  e.  A  ( -.  p ( le `  K ) ( 0. `  K )  /\  p ( le
`  K ) x )  /\  E. q  e.  A  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) ) ) )
21 reeanv 3107 . . . . 5  |-  ( E. p  e.  A  E. q  e.  A  (
( -.  p ( le `  K ) ( 0. `  K
)  /\  p ( le `  K ) x )  /\  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) )  <->  ( E. p  e.  A  ( -.  p ( le `  K ) ( 0.
`  K )  /\  p ( le `  K ) x )  /\  E. q  e.  A  ( -.  q
( le `  K
) x  /\  q
( le `  K
) ( 1. `  K ) ) ) )
22 nbrne2 4673 . . . . . . . 8  |-  ( ( p ( le `  K ) x  /\  -.  q ( le `  K ) x )  ->  p  =/=  q
)
2322ad2ant2lr 784 . . . . . . 7  |-  ( ( ( -.  p ( le `  K ) ( 0. `  K
)  /\  p ( le `  K ) x )  /\  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) )  ->  p  =/=  q )
2423reximi 3011 . . . . . 6  |-  ( E. q  e.  A  ( ( -.  p ( le `  K ) ( 0. `  K
)  /\  p ( le `  K ) x )  /\  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) )  ->  E. q  e.  A  p  =/=  q )
2524reximi 3011 . . . . 5  |-  ( E. p  e.  A  E. q  e.  A  (
( -.  p ( le `  K ) ( 0. `  K
)  /\  p ( le `  K ) x )  /\  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) )  ->  E. p  e.  A  E. q  e.  A  p  =/=  q )
2621, 25sylbir 225 . . . 4  |-  ( ( E. p  e.  A  ( -.  p ( le `  K ) ( 0. `  K )  /\  p ( le
`  K ) x )  /\  E. q  e.  A  ( -.  q ( le `  K ) x  /\  q ( le `  K ) ( 1.
`  K ) ) )  ->  E. p  e.  A  E. q  e.  A  p  =/=  q )
2720, 26syl6 35 . . 3  |-  ( ( K  e.  HL  /\  x  e.  ( Base `  K ) )  -> 
( ( ( 0.
`  K ) ( lt `  K ) x  /\  x ( lt `  K ) ( 1. `  K
) )  ->  E. p  e.  A  E. q  e.  A  p  =/=  q ) )
2827rexlimdva 3031 . 2  |-  ( K  e.  HL  ->  ( E. x  e.  ( Base `  K ) ( ( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) ( 1.
`  K ) )  ->  E. p  e.  A  E. q  e.  A  p  =/=  q ) )
295, 28mpd 15 1  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  p  =/=  q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   ltcplt 16941   0.cp0 17037   1.cp1 17038   OPcops 34459   Atomscatm 34550   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  atex  34692
  Copyright terms: Public domain W3C validator