MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsupr Structured version   Visualization version   Unicode version

Theorem iccsupr 12266
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 10983). (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Distinct variable groups:    y, A    x, B, y    x, S, y
Allowed substitution hints:    A( x)    C( x, y)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 12255 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2 sstr 3611 . . . . 5  |-  ( ( S  C_  ( A [,] B )  /\  ( A [,] B )  C_  RR )  ->  S  C_  RR )
32ancoms 469 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  S  C_  ( A [,] B
) )  ->  S  C_  RR )
41, 3sylan 488 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  S  C_  RR )
543adant3 1081 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  C_  RR )
6 ne0i 3921 . . 3  |-  ( C  e.  S  ->  S  =/=  (/) )
763ad2ant3 1084 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  =/=  (/) )
8 simplr 792 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  B  e.  RR )
9 ssel 3597 . . . . . . . 8  |-  ( S 
C_  ( A [,] B )  ->  (
y  e.  S  -> 
y  e.  ( A [,] B ) ) )
10 elicc2 12238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
1110biimpd 219 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
129, 11sylan9r 690 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  ( y  e.  S  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
1312imp 445 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
1413simp3d 1075 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  y  <_  B )
1514ralrimiva 2966 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  A. y  e.  S  y  <_  B )
16 breq2 4657 . . . . . 6  |-  ( x  =  B  ->  (
y  <_  x  <->  y  <_  B ) )
1716ralbidv 2986 . . . . 5  |-  ( x  =  B  ->  ( A. y  e.  S  y  <_  x  <->  A. y  e.  S  y  <_  B ) )
1817rspcev 3309 . . . 4  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
198, 15, 18syl2anc 693 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
20193adant3 1081 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
215, 7, 203jca 1242 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   RRcr 9935    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  supicc  12320  hoidmv1lelem1  40805  hoidmv1lelem3  40807  hoidmvlelem1  40809
  Copyright terms: Public domain W3C validator