MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   Unicode version

Theorem supicc 12320
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1  |-  ( ph  ->  B  e.  RR )
supicc.2  |-  ( ph  ->  C  e.  RR )
supicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
supicc.4  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
supicc  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  ( B [,] C
) )

Proof of Theorem supicc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4  |-  ( ph  ->  A  C_  ( B [,] C ) )
2 supicc.1 . . . . 5  |-  ( ph  ->  B  e.  RR )
3 supicc.2 . . . . 5  |-  ( ph  ->  C  e.  RR )
4 iccssre 12255 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
52, 3, 4syl2anc 693 . . . 4  |-  ( ph  ->  ( B [,] C
)  C_  RR )
61, 5sstrd 3613 . . 3  |-  ( ph  ->  A  C_  RR )
7 supicc.4 . . 3  |-  ( ph  ->  A  =/=  (/) )
82adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
98rexrd 10089 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
103adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
1110rexrd 10089 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR* )
121sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ( B [,] C
) )
13 iccleub 12229 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( B [,] C
) )  ->  x  <_  C )
149, 11, 12, 13syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  <_  C )
1514ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  A  x  <_  C )
16 breq2 4657 . . . . . 6  |-  ( y  =  C  ->  (
x  <_  y  <->  x  <_  C ) )
1716ralbidv 2986 . . . . 5  |-  ( y  =  C  ->  ( A. x  e.  A  x  <_  y  <->  A. x  e.  A  x  <_  C ) )
1817rspcev 3309 . . . 4  |-  ( ( C  e.  RR  /\  A. x  e.  A  x  <_  C )  ->  E. y  e.  RR  A. x  e.  A  x  <_  y )
193, 15, 18syl2anc 693 . . 3  |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  x  <_  y )
20 suprcl 10983 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. y  e.  RR  A. x  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
216, 7, 19, 20syl3anc 1326 . 2  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
226sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
231adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  A  C_  ( B [,] C
) )
24 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
25 iccsupr 12266 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  A  C_  ( B [,] C )  /\  x  e.  A )  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. y  e.  RR  A. x  e.  A  x  <_  y ) )
268, 10, 23, 24, 25syl211anc 1332 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. y  e.  RR  A. x  e.  A  x  <_  y
) )
2726, 20syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
28 iccgelb 12230 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( B [,] C
) )  ->  B  <_  x )
299, 11, 12, 28syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  x )
30 suprub 10984 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. y  e.  RR  A. x  e.  A  x  <_  y )  /\  x  e.  A )  ->  x  <_  sup ( A ,  RR ,  <  ) )
3126, 24, 30syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  <_  sup ( A ,  RR ,  <  ) )
328, 22, 27, 29, 31letrd 10194 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
3332ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  A  B  <_  sup ( A ,  RR ,  <  ) )
34 r19.3rzv 4064 . . . 4  |-  ( A  =/=  (/)  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  A. x  e.  A  B  <_  sup ( A ,  RR ,  <  ) ) )
357, 34syl 17 . . 3  |-  ( ph  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  A. x  e.  A  B  <_  sup ( A ,  RR ,  <  ) ) )
3633, 35mpbird 247 . 2  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
37 suprleub 10989 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. y  e.  RR  A. x  e.  A  x  <_  y )  /\  C  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. x  e.  A  x  <_  C ) )
386, 7, 19, 3, 37syl31anc 1329 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. x  e.  A  x  <_  C ) )
3915, 38mpbird 247 . 2  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
40 elicc2 12238 . . 3  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  e.  ( B [,] C )  <->  ( sup ( A ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( A ,  RR ,  <  )  /\  sup ( A ,  RR ,  <  )  <_  C
) ) )
412, 3, 40syl2anc 693 . 2  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  e.  ( B [,] C )  <->  ( sup ( A ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( A ,  RR ,  <  )  /\  sup ( A ,  RR ,  <  )  <_  C
) ) )
4221, 36, 39, 41mpbir3and 1245 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  ( B [,] C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-icc 12182
This theorem is referenced by:  supicclub2  12323  hoidmv1lelem1  40805  hoidmvlelem1  40809
  Copyright terms: Public domain W3C validator