| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreclin | Structured version Visualization version Unicode version | ||
| Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.) |
| Ref | Expression |
|---|---|
| isbasisrelowl.1 |
|
| Ref | Expression |
|---|---|
| icoreclin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisrelowl.1 |
. . . 4
| |
| 2 | 1 | icoreelrnab 33202 |
. . 3
|
| 3 | 1 | icoreelrnab 33202 |
. . . . . . 7
|
| 4 | 1 | isbasisrelowllem1 33203 |
. . . . . . . . . . . . 13
|
| 5 | 4 | ex 450 |
. . . . . . . . . . . 12
|
| 6 | 1 | isbasisrelowllem2 33204 |
. . . . . . . . . . . . 13
|
| 7 | 6 | ex 450 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | jaod 395 |
. . . . . . . . . . 11
|
| 9 | incom 3805 |
. . . . . . . . . . . . . . 15
| |
| 10 | 1 | isbasisrelowllem2 33204 |
. . . . . . . . . . . . . . 15
|
| 11 | 9, 10 | syl5eqelr 2706 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | ancom1s 847 |
. . . . . . . . . . . . 13
|
| 13 | 12 | ex 450 |
. . . . . . . . . . . 12
|
| 14 | 1 | isbasisrelowllem1 33203 |
. . . . . . . . . . . . . . 15
|
| 15 | 9, 14 | syl5eqelr 2706 |
. . . . . . . . . . . . . 14
|
| 16 | 15 | ancom1s 847 |
. . . . . . . . . . . . 13
|
| 17 | 16 | ex 450 |
. . . . . . . . . . . 12
|
| 18 | 13, 17 | jaod 395 |
. . . . . . . . . . 11
|
| 19 | 3simpa 1058 |
. . . . . . . . . . . 12
| |
| 20 | 3simpa 1058 |
. . . . . . . . . . . 12
| |
| 21 | letric 10137 |
. . . . . . . . . . . . . . 15
| |
| 22 | letric 10137 |
. . . . . . . . . . . . . . 15
| |
| 23 | 21, 22 | anim12i 590 |
. . . . . . . . . . . . . 14
|
| 24 | anddi 914 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | sylib 208 |
. . . . . . . . . . . . 13
|
| 26 | 25 | an4s 869 |
. . . . . . . . . . . 12
|
| 27 | 19, 20, 26 | syl2an 494 |
. . . . . . . . . . 11
|
| 28 | 8, 18, 27 | mpjaod 396 |
. . . . . . . . . 10
|
| 29 | 28 | ex 450 |
. . . . . . . . 9
|
| 30 | 29 | 3expia 1267 |
. . . . . . . 8
|
| 31 | 30 | rexlimivv 3036 |
. . . . . . 7
|
| 32 | 3, 31 | sylbi 207 |
. . . . . 6
|
| 33 | 32 | com12 32 |
. . . . 5
|
| 34 | 33 | 3expia 1267 |
. . . 4
|
| 35 | 34 | rexlimivv 3036 |
. . 3
|
| 36 | 2, 35 | sylbi 207 |
. 2
|
| 37 | 36 | impcom 446 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 |
| This theorem is referenced by: isbasisrelowl 33206 |
| Copyright terms: Public domain | W3C validator |