MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   Unicode version

Theorem taylfval 24113
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 
S is the base set with respect to evaluate the derivatives (generally  RR or 
CC),  F is the function we are approximating, at point  B, to order  N. The result is a polynomial function of  x.

This "extended" version of taylpfval 24119 additionally handles the case  N  = +oo, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)

Hypotheses
Ref Expression
taylfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylfval.f  |-  ( ph  ->  F : A --> CC )
taylfval.a  |-  ( ph  ->  A  C_  S )
taylfval.n  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
taylfval.b  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
taylfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylfval  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
Distinct variable groups:    x, k, B    k, F, x    ph, k, x    k, N, x    S, k, x    x, T
Allowed substitution hints:    A( x, k)    T( k)

Proof of Theorem taylfval
Dummy variables  a  n  f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2  |-  T  =  ( N ( S Tayl 
F ) B )
2 df-tayl 24109 . . . . 5  |- Tayl  =  ( s  e.  { RR ,  CC } ,  f  e.  ( CC  ^pm  s )  |->  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( s  Dn f ) `
 k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( s  Dn f ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) ) ) )
32a1i 11 . . . 4  |-  ( ph  -> Tayl  =  ( s  e. 
{ RR ,  CC } ,  f  e.  ( CC  ^pm  s ) 
|->  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e. 
|^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( s  Dn f ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) ) ) )
4 eqidd 2623 . . . . 5  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  -> 
( NN0  u.  { +oo } )  =  ( NN0 
u.  { +oo } ) )
5 oveq12 6659 . . . . . . . . 9  |-  ( ( s  =  S  /\  f  =  F )  ->  ( s  Dn
f )  =  ( S  Dn F ) )
65ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  (
s  Dn f )  =  ( S  Dn F ) )
76fveq1d 6193 . . . . . . 7  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  (
( s  Dn
f ) `  k
)  =  ( ( S  Dn F ) `  k ) )
87dmeqd 5326 . . . . . 6  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  dom  ( ( s  Dn f ) `  k )  =  dom  ( ( S  Dn F ) `  k ) )
98iineq2dv 4543 . . . . 5  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  ->  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( s  Dn f ) `  k )  =  |^|_ k  e.  ( (
0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `  k ) )
107fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  (
( ( s  Dn f ) `  k ) `  a
)  =  ( ( ( S  Dn
F ) `  k
) `  a )
)
1110oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  (
( ( ( s  Dn f ) `
 k ) `  a )  /  ( ! `  k )
)  =  ( ( ( ( S  Dn F ) `  k ) `  a
)  /  ( ! `
 k ) ) )
1211oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
s  =  S  /\  f  =  F )
)  /\  k  e.  ( ( 0 [,] n )  i^i  ZZ ) )  ->  (
( ( ( ( s  Dn f ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) )  =  ( ( ( ( ( S  Dn F ) `
 k ) `  a )  /  ( ! `  k )
)  x.  ( ( x  -  a ) ^ k ) ) )
1312mpteq2dva 4744 . . . . . . . 8  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  -> 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) )  =  ( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) )
1413oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  -> 
(fld tsums  ( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) )  =  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) )
1514xpeq2d 5139 . . . . . 6  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  -> 
( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) )  =  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  a )  /  ( ! `  k )
)  x.  ( ( x  -  a ) ^ k ) ) ) ) ) )
1615iuneq2d 4547 . . . . 5  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( s  Dn f ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) )  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) )
174, 9, 16mpt2eq123dv 6717 . . . 4  |-  ( (
ph  /\  ( s  =  S  /\  f  =  F ) )  -> 
( n  e.  ( NN0  u.  { +oo } ) ,  a  e. 
|^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( s  Dn f ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) )  =  ( n  e.  ( NN0 
u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( (
0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) ) )
18 simpr 477 . . . . 5  |-  ( (
ph  /\  s  =  S )  ->  s  =  S )
1918oveq2d 6666 . . . 4  |-  ( (
ph  /\  s  =  S )  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
20 taylfval.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
21 cnex 10017 . . . . . 6  |-  CC  e.  _V
2221a1i 11 . . . . 5  |-  ( ph  ->  CC  e.  _V )
23 taylfval.f . . . . 5  |-  ( ph  ->  F : A --> CC )
24 taylfval.a . . . . 5  |-  ( ph  ->  A  C_  S )
25 elpm2r 7875 . . . . 5  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
2622, 20, 23, 24, 25syl22anc 1327 . . . 4  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
27 nn0ex 11298 . . . . . . 7  |-  NN0  e.  _V
28 snex 4908 . . . . . . 7  |-  { +oo }  e.  _V
2927, 28unex 6956 . . . . . 6  |-  ( NN0 
u.  { +oo } )  e.  _V
30 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
3130a1i 11 . . . . . . . . . 10  |-  ( n  e.  ( NN0  u.  { +oo } )  -> 
0  e.  RR* )
32 nn0ssre 11296 . . . . . . . . . . . . 13  |-  NN0  C_  RR
33 ressxr 10083 . . . . . . . . . . . . 13  |-  RR  C_  RR*
3432, 33sstri 3612 . . . . . . . . . . . 12  |-  NN0  C_  RR*
35 pnfxr 10092 . . . . . . . . . . . . 13  |- +oo  e.  RR*
36 snssi 4339 . . . . . . . . . . . . 13  |-  ( +oo  e.  RR*  ->  { +oo }  C_ 
RR* )
3735, 36ax-mp 5 . . . . . . . . . . . 12  |-  { +oo } 
C_  RR*
3834, 37unssi 3788 . . . . . . . . . . 11  |-  ( NN0 
u.  { +oo } ) 
C_  RR*
3938sseli 3599 . . . . . . . . . 10  |-  ( n  e.  ( NN0  u.  { +oo } )  ->  n  e.  RR* )
40 elun 3753 . . . . . . . . . . 11  |-  ( n  e.  ( NN0  u.  { +oo } )  <->  ( n  e.  NN0  \/  n  e. 
{ +oo } ) )
41 nn0ge0 11318 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  0  <_  n )
42 0lepnf 11966 . . . . . . . . . . . . 13  |-  0  <_ +oo
43 elsni 4194 . . . . . . . . . . . . 13  |-  ( n  e.  { +oo }  ->  n  = +oo )
4442, 43syl5breqr 4691 . . . . . . . . . . . 12  |-  ( n  e.  { +oo }  ->  0  <_  n )
4541, 44jaoi 394 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  \/  n  e.  { +oo }
)  ->  0  <_  n )
4640, 45sylbi 207 . . . . . . . . . 10  |-  ( n  e.  ( NN0  u.  { +oo } )  -> 
0  <_  n )
47 lbicc2 12288 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  n  e.  RR*  /\  0  <_  n )  ->  0  e.  ( 0 [,] n
) )
4831, 39, 46, 47syl3anc 1326 . . . . . . . . 9  |-  ( n  e.  ( NN0  u.  { +oo } )  -> 
0  e.  ( 0 [,] n ) )
49 0z 11388 . . . . . . . . 9  |-  0  e.  ZZ
50 inelcm 4032 . . . . . . . . 9  |-  ( ( 0  e.  ( 0 [,] n )  /\  0  e.  ZZ )  ->  ( ( 0 [,] n )  i^i  ZZ )  =/=  (/) )
5148, 49, 50sylancl 694 . . . . . . . 8  |-  ( n  e.  ( NN0  u.  { +oo } )  -> 
( ( 0 [,] n )  i^i  ZZ )  =/=  (/) )
52 fvex 6201 . . . . . . . . . 10  |-  ( ( S  Dn F ) `  k )  e.  _V
5352dmex 7099 . . . . . . . . 9  |-  dom  (
( S  Dn
F ) `  k
)  e.  _V
5453rgenw 2924 . . . . . . . 8  |-  A. k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  e. 
_V
55 iinexg 4824 . . . . . . . 8  |-  ( ( ( ( 0 [,] n )  i^i  ZZ )  =/=  (/)  /\  A. k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  e. 
_V )  ->  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  e. 
_V )
5651, 54, 55sylancl 694 . . . . . . 7  |-  ( n  e.  ( NN0  u.  { +oo } )  ->  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  e.  _V )
5756rgen 2922 . . . . . 6  |-  A. n  e.  ( NN0  u.  { +oo } ) |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  e. 
_V
58 eqid 2622 . . . . . . 7  |-  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) ) )  =  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) ) )
5958mpt2exxg 7244 . . . . . 6  |-  ( ( ( NN0  u.  { +oo } )  e.  _V  /\ 
A. n  e.  ( NN0  u.  { +oo } ) |^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  e.  _V )  ->  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) )  e.  _V )
6029, 57, 59mp2an 708 . . . . 5  |-  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) ) )  e.  _V
6160a1i 11 . . . 4  |-  ( ph  ->  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e. 
|^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) )  e.  _V )
623, 17, 19, 20, 26, 61ovmpt2dx 6787 . . 3  |-  ( ph  ->  ( S Tayl  F )  =  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e.  |^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) ) )
63 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  ->  n  =  N )
6463oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( 0 [,] n
)  =  ( 0 [,] N ) )
6564ineq1d 3813 . . . . . . 7  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( ( 0 [,] n )  i^i  ZZ )  =  ( (
0 [,] N )  i^i  ZZ ) )
66 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
a  =  B )
6766fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( ( ( S  Dn F ) `
 k ) `  a )  =  ( ( ( S  Dn F ) `  k ) `  B
) )
6867oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( ( ( ( S  Dn F ) `  k ) `
 a )  / 
( ! `  k
) )  =  ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
) )
6966oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( x  -  a
)  =  ( x  -  B ) )
7069oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( ( x  -  a ) ^ k
)  =  ( ( x  -  B ) ^ k ) )
7168, 70oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) )  =  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) )
7265, 71mpteq12dv 4733 . . . . . 6  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) )  =  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )
7372oveq2d 6666 . . . . 5  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
(fld tsums  ( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) )  =  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )
7473xpeq2d 5139 . . . 4  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  -> 
( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) )  =  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) ) )
7574iuneq2d 4547 . . 3  |-  ( (
ph  /\  ( n  =  N  /\  a  =  B ) )  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] n )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 a )  / 
( ! `  k
) )  x.  (
( x  -  a
) ^ k ) ) ) ) )  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
76 simpr 477 . . . . . 6  |-  ( (
ph  /\  n  =  N )  ->  n  =  N )
7776oveq2d 6666 . . . . 5  |-  ( (
ph  /\  n  =  N )  ->  (
0 [,] n )  =  ( 0 [,] N ) )
7877ineq1d 3813 . . . 4  |-  ( (
ph  /\  n  =  N )  ->  (
( 0 [,] n
)  i^i  ZZ )  =  ( ( 0 [,] N )  i^i 
ZZ ) )
79 iineq1 4535 . . . 4  |-  ( ( ( 0 [,] n
)  i^i  ZZ )  =  ( ( 0 [,] N )  i^i 
ZZ )  ->  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  = 
|^|_ k  e.  ( ( 0 [,] N
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k ) )
8078, 79syl 17 . . 3  |-  ( (
ph  /\  n  =  N )  ->  |^|_ k  e.  ( ( 0 [,] n )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  = 
|^|_ k  e.  ( ( 0 [,] N
)  i^i  ZZ ) dom  ( ( S  Dn F ) `  k ) )
81 taylfval.n . . . . 5  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
82 pnfex 10093 . . . . . . 7  |- +oo  e.  _V
8382elsn2 4211 . . . . . 6  |-  ( N  e.  { +oo }  <->  N  = +oo )
8483orbi2i 541 . . . . 5  |-  ( ( N  e.  NN0  \/  N  e.  { +oo }
)  <->  ( N  e. 
NN0  \/  N  = +oo ) )
8581, 84sylibr 224 . . . 4  |-  ( ph  ->  ( N  e.  NN0  \/  N  e.  { +oo } ) )
86 elun 3753 . . . 4  |-  ( N  e.  ( NN0  u.  { +oo } )  <->  ( N  e.  NN0  \/  N  e. 
{ +oo } ) )
8785, 86sylibr 224 . . 3  |-  ( ph  ->  N  e.  ( NN0 
u.  { +oo } ) )
88 taylfval.b . . . . 5  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
8988ralrimiva 2966 . . . 4  |-  ( ph  ->  A. k  e.  ( ( 0 [,] N
)  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) )
90 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  N  ->  (
0 [,] n )  =  ( 0 [,] N ) )
9190ineq1d 3813 . . . . . . . . 9  |-  ( n  =  N  ->  (
( 0 [,] n
)  i^i  ZZ )  =  ( ( 0 [,] N )  i^i 
ZZ ) )
9291neeq1d 2853 . . . . . . . 8  |-  ( n  =  N  ->  (
( ( 0 [,] n )  i^i  ZZ )  =/=  (/)  <->  ( ( 0 [,] N )  i^i 
ZZ )  =/=  (/) ) )
9392, 51vtoclga 3272 . . . . . . 7  |-  ( N  e.  ( NN0  u.  { +oo } )  -> 
( ( 0 [,] N )  i^i  ZZ )  =/=  (/) )
9487, 93syl 17 . . . . . 6  |-  ( ph  ->  ( ( 0 [,] N )  i^i  ZZ )  =/=  (/) )
95 r19.2z 4060 . . . . . 6  |-  ( ( ( ( 0 [,] N )  i^i  ZZ )  =/=  (/)  /\  A. k  e.  ( ( 0 [,] N )  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) )  ->  E. k  e.  (
( 0 [,] N
)  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) )
9694, 89, 95syl2anc 693 . . . . 5  |-  ( ph  ->  E. k  e.  ( ( 0 [,] N
)  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) )
97 elex 3212 . . . . . 6  |-  ( B  e.  dom  ( ( S  Dn F ) `  k )  ->  B  e.  _V )
9897rexlimivw 3029 . . . . 5  |-  ( E. k  e.  ( ( 0 [,] N )  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k )  ->  B  e.  _V )
99 eliin 4525 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  |^|_ k  e.  ( ( 0 [,] N )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k )  <->  A. k  e.  ( ( 0 [,] N )  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) ) )
10096, 98, 993syl 18 . . . 4  |-  ( ph  ->  ( B  e.  |^|_ k  e.  ( (
0 [,] N )  i^i  ZZ ) dom  ( ( S  Dn F ) `  k )  <->  A. k  e.  ( ( 0 [,] N )  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) ) )
10189, 100mpbird 247 . . 3  |-  ( ph  ->  B  e.  |^|_ k  e.  ( ( 0 [,] N )  i^i  ZZ ) dom  ( ( S  Dn F ) `
 k ) )
102 snssi 4339 . . . . . . . 8  |-  ( x  e.  CC  ->  { x }  C_  CC )
103102adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  { x }  C_  CC )
10420, 23, 24, 81, 88taylfvallem 24112 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )  C_  CC )
105 xpss12 5225 . . . . . . 7  |-  ( ( { x }  C_  CC  /\  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) 
C_  CC )  -> 
( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )  C_  ( CC  X.  CC ) )
106103, 104, 105syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) )  C_  ( CC  X.  CC ) )
107106ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
108 iunss 4561 . . . . 5  |-  ( U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC )  <->  A. x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
109107, 108sylibr 224 . . . 4  |-  ( ph  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
11021, 21xpex 6962 . . . . 5  |-  ( CC 
X.  CC )  e. 
_V
111110ssex 4802 . . . 4  |-  ( U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC )  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )  e.  _V )
112109, 111syl 17 . . 3  |-  ( ph  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) )  e.  _V )
11362, 75, 80, 87, 101, 112ovmpt2dx 6787 . 2  |-  ( ph  ->  ( N ( S Tayl 
F ) B )  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
1141, 113syl5eq 2668 1  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   U_ciun 4520   |^|_ciin 4521   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    <_ cle 10075    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZcz 11377   [,]cicc 12178   ^cexp 12860   !cfa 13060  ℂfldccnfld 19746   tsums ctsu 21929    Dncdvn 23628   Tayl ctayl 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631  df-dvn 23632  df-tayl 24109
This theorem is referenced by:  eltayl  24114  taylf  24115  taylpfval  24119
  Copyright terms: Public domain W3C validator