MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phssip Structured version   Visualization version   Unicode version

Theorem phssip 20003
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
phssip.x  |-  X  =  ( Ws  U )
phssip.s  |-  S  =  ( LSubSp `  W )
phssip.i  |-  .x.  =  ( .if `  W
)
phssip.p  |-  P  =  ( .if `  X )
Assertion
Ref Expression
phssip  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  P  =  (  .x.  |`  ( U  X.  U ) ) )

Proof of Theorem phssip
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
2 eqid 2622 . . . 4  |-  ( .i
`  X )  =  ( .i `  X
)
3 phssip.p . . . 4  |-  P  =  ( .if `  X )
41, 2, 3ipffval 19993 . . 3  |-  P  =  ( x  e.  (
Base `  X ) ,  y  e.  ( Base `  X )  |->  ( x ( .i `  X ) y ) )
5 phllmod 19975 . . . . . . 7  |-  ( W  e.  PreHil  ->  W  e.  LMod )
6 phssip.s . . . . . . . 8  |-  S  =  ( LSubSp `  W )
76lsssubg 18957 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
85, 7sylan 488 . . . . . 6  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
9 phssip.x . . . . . . 7  |-  X  =  ( Ws  U )
109subgbas 17598 . . . . . 6  |-  ( U  e.  (SubGrp `  W
)  ->  U  =  ( Base `  X )
)
118, 10syl 17 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
12 eqidd 2623 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
x ( .i `  W ) y )  =  ( x ( .i `  W ) y ) )
1311, 11, 12mpt2eq123dv 6717 . . . 4  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
x  e.  U , 
y  e.  U  |->  ( x ( .i `  W ) y ) )  =  ( x  e.  ( Base `  X
) ,  y  e.  ( Base `  X
)  |->  ( x ( .i `  W ) y ) ) )
14 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
1514subgss 17595 . . . . . 6  |-  ( U  e.  (SubGrp `  W
)  ->  U  C_  ( Base `  W ) )
168, 15syl 17 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
17 resmpt2 6758 . . . . 5  |-  ( ( U  C_  ( Base `  W )  /\  U  C_  ( Base `  W
) )  ->  (
( x  e.  (
Base `  W ) ,  y  e.  ( Base `  W )  |->  ( x ( .i `  W ) y ) )  |`  ( U  X.  U ) )  =  ( x  e.  U ,  y  e.  U  |->  ( x ( .i
`  W ) y ) ) )
1816, 16, 17syl2anc 693 . . . 4  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
( x  e.  (
Base `  W ) ,  y  e.  ( Base `  W )  |->  ( x ( .i `  W ) y ) )  |`  ( U  X.  U ) )  =  ( x  e.  U ,  y  e.  U  |->  ( x ( .i
`  W ) y ) ) )
19 eqid 2622 . . . . . . . 8  |-  ( .i
`  W )  =  ( .i `  W
)
209, 19, 2ssipeq 20001 . . . . . . 7  |-  ( U  e.  S  ->  ( .i `  X )  =  ( .i `  W
) )
2120adantl 482 . . . . . 6  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  ( .i `  X )  =  ( .i `  W
) )
2221oveqd 6667 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
x ( .i `  X ) y )  =  ( x ( .i `  W ) y ) )
2322mpt2eq3dv 6721 . . . 4  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
x  e.  ( Base `  X ) ,  y  e.  ( Base `  X
)  |->  ( x ( .i `  X ) y ) )  =  ( x  e.  (
Base `  X ) ,  y  e.  ( Base `  X )  |->  ( x ( .i `  W ) y ) ) )
2413, 18, 233eqtr4rd 2667 . . 3  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (
x  e.  ( Base `  X ) ,  y  e.  ( Base `  X
)  |->  ( x ( .i `  X ) y ) )  =  ( ( x  e.  ( Base `  W
) ,  y  e.  ( Base `  W
)  |->  ( x ( .i `  W ) y ) )  |`  ( U  X.  U
) ) )
254, 24syl5eq 2668 . 2  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  P  =  ( ( x  e.  ( Base `  W
) ,  y  e.  ( Base `  W
)  |->  ( x ( .i `  W ) y ) )  |`  ( U  X.  U
) ) )
26 phssip.i . . . . 5  |-  .x.  =  ( .if `  W
)
2714, 19, 26ipffval 19993 . . . 4  |-  .x.  =  ( x  e.  ( Base `  W ) ,  y  e.  ( Base `  W )  |->  ( x ( .i `  W
) y ) )
2827a1i 11 . . 3  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  .x.  =  ( x  e.  ( Base `  W ) ,  y  e.  ( Base `  W )  |->  ( x ( .i `  W
) y ) ) )
2928reseq1d 5395 . 2  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  (  .x.  |`  ( U  X.  U ) )  =  ( ( x  e.  ( Base `  W
) ,  y  e.  ( Base `  W
)  |->  ( x ( .i `  W ) y ) )  |`  ( U  X.  U
) ) )
3025, 29eqtr4d 2659 1  |-  ( ( W  e.  PreHil  /\  U  e.  S )  ->  P  =  (  .x.  |`  ( U  X.  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   ↾s cress 15858   .icip 15946  SubGrpcsubg 17588   LModclmod 18863   LSubSpclss 18932   PreHilcphl 19969   .ifcipf 19970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lvec 19103  df-phl 19971  df-ipf 19972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator