MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmplusg Structured version   Visualization version   Unicode version

Theorem lmhmplusg 19044
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
lmhmplusg.p  |-  .+  =  ( +g  `  N )
Assertion
Ref Expression
lmhmplusg  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M LMHom  N
) )

Proof of Theorem lmhmplusg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2622 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 eqid 2622 . 2  |-  ( .s
`  N )  =  ( .s `  N
)
4 eqid 2622 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
5 eqid 2622 . 2  |-  (Scalar `  N )  =  (Scalar `  N )
6 eqid 2622 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
7 lmhmlmod1 19033 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  M  e.  LMod )
87adantr 481 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  M  e.  LMod )
9 lmhmlmod2 19032 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  N  e.  LMod )
109adantr 481 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  N  e.  LMod )
114, 5lmhmsca 19030 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  (Scalar `  N
)  =  (Scalar `  M ) )
1211adantr 481 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  (Scalar `  N
)  =  (Scalar `  M ) )
13 lmodabl 18910 . . . 4  |-  ( N  e.  LMod  ->  N  e. 
Abel )
1410, 13syl 17 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  N  e.  Abel )
15 lmghm 19031 . . . 4  |-  ( F  e.  ( M LMHom  N
)  ->  F  e.  ( M  GrpHom  N ) )
1615adantr 481 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  F  e.  ( M  GrpHom  N ) )
17 lmghm 19031 . . . 4  |-  ( G  e.  ( M LMHom  N
)  ->  G  e.  ( M  GrpHom  N ) )
1817adantl 482 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  G  e.  ( M  GrpHom  N ) )
19 lmhmplusg.p . . . 4  |-  .+  =  ( +g  `  N )
2019ghmplusg 18249 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M  GrpHom  N ) )
2114, 16, 18, 20syl3anc 1326 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M  GrpHom  N ) )
22 simpll 790 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  e.  ( M LMHom  N ) )
23 simprl 794 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  M ) ) )
24 simprr 796 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
254, 6, 1, 2, 3lmhmlin 19035 . . . . . 6  |-  ( ( F  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( F `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( F `  y ) ) )
2622, 23, 24, 25syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( F `  y
) ) )
27 simplr 792 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  e.  ( M LMHom  N ) )
284, 6, 1, 2, 3lmhmlin 19035 . . . . . 6  |-  ( ( G  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( G `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( G `  y ) ) )
2927, 23, 24, 28syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( G `  y
) ) )
3026, 29oveq12d 6668 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) )  =  ( ( x ( .s `  N
) ( F `  y ) )  .+  ( x ( .s
`  N ) ( G `  y ) ) ) )
319ad2antrr 762 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  N  e.  LMod )
3211fveq2d 6195 . . . . . . 7  |-  ( F  e.  ( M LMHom  N
)  ->  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  M )
) )
3332ad2antrr 762 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  (Scalar `  N
) )  =  (
Base `  (Scalar `  M
) ) )
3423, 33eleqtrrd 2704 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  N ) ) )
35 eqid 2622 . . . . . . . 8  |-  ( Base `  N )  =  (
Base `  N )
361, 35lmhmf 19034 . . . . . . 7  |-  ( F  e.  ( M LMHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
3736ad2antrr 762 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F : ( Base `  M
) --> ( Base `  N
) )
3837, 24ffvelrnd 6360 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  y )  e.  ( Base `  N
) )
391, 35lmhmf 19034 . . . . . . 7  |-  ( G  e.  ( M LMHom  N
)  ->  G :
( Base `  M ) --> ( Base `  N )
)
4039ad2antlr 763 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G : ( Base `  M
) --> ( Base `  N
) )
4140, 24ffvelrnd 6360 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
42 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  N )
)
4335, 19, 5, 3, 42lmodvsdi 18886 . . . . 5  |-  ( ( N  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  N )
)  /\  ( F `  y )  e.  (
Base `  N )  /\  ( G `  y
)  e.  ( Base `  N ) ) )  ->  ( x ( .s `  N ) ( ( F `  y )  .+  ( G `  y )
) )  =  ( ( x ( .s
`  N ) ( F `  y ) )  .+  ( x ( .s `  N
) ( G `  y ) ) ) )
4431, 34, 38, 41, 43syl13anc 1328 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  N ) ( ( F `  y ) 
.+  ( G `  y ) ) )  =  ( ( x ( .s `  N
) ( F `  y ) )  .+  ( x ( .s
`  N ) ( G `  y ) ) ) )
4530, 44eqtr4d 2659 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) )  =  ( x ( .s `  N ) ( ( F `  y )  .+  ( G `  y )
) ) )
46 ffn 6045 . . . . 5  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  F  Fn  ( Base `  M )
)
4737, 46syl 17 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  Fn  ( Base `  M
) )
48 ffn 6045 . . . . 5  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
4940, 48syl 17 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
50 fvexd 6203 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  M )  e. 
_V )
517ad2antrr 762 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  M  e.  LMod )
521, 4, 2, 6lmodvscl 18880 . . . . 5  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( x ( .s
`  M ) y )  e.  ( Base `  M ) )
5351, 23, 24, 52syl3anc 1326 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  M ) y )  e.  ( Base `  M
) )
54 fnfvof 6911 . . . 4  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  ( x ( .s
`  M ) y )  e.  ( Base `  M ) ) )  ->  ( ( F  oF  .+  G
) `  ( x
( .s `  M
) y ) )  =  ( ( F `
 ( x ( .s `  M ) y ) )  .+  ( G `  ( x ( .s `  M
) y ) ) ) )
5547, 49, 50, 53, 54syl22anc 1327 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  ( x ( .s
`  M ) y ) )  =  ( ( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) ) )
56 fnfvof 6911 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  y  e.  ( Base `  M ) ) )  ->  ( ( F  oF  .+  G
) `  y )  =  ( ( F `
 y )  .+  ( G `  y ) ) )
5747, 49, 50, 24, 56syl22anc 1327 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  y )  =  ( ( F `  y
)  .+  ( G `  y ) ) )
5857oveq2d 6666 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  N ) ( ( F  oF  .+  G ) `  y
) )  =  ( x ( .s `  N ) ( ( F `  y ) 
.+  ( G `  y ) ) ) )
5945, 55, 583eqtr4d 2666 . 2  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  ( x ( .s
`  M ) y ) )  =  ( x ( .s `  N ) ( ( F  oF  .+  G ) `  y
) ) )
601, 2, 3, 4, 5, 6, 8, 10, 12, 21, 59islmhmd 19039 1  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M LMHom  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945    GrpHom cghm 17657   Abelcabl 18194   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  nmhmplusg  22561  mendring  37762
  Copyright terms: Public domain W3C validator