MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   Unicode version

Theorem pwssplit3 19061
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y  |-  Y  =  ( W  ^s  U )
pwssplit1.z  |-  Z  =  ( W  ^s  V )
pwssplit1.b  |-  B  =  ( Base `  Y
)
pwssplit1.c  |-  C  =  ( Base `  Z
)
pwssplit1.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
pwssplit3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Distinct variable groups:    x, Y    x, W    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem pwssplit3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2  |-  B  =  ( Base `  Y
)
2 eqid 2622 . 2  |-  ( .s
`  Y )  =  ( .s `  Y
)
3 eqid 2622 . 2  |-  ( .s
`  Z )  =  ( .s `  Z
)
4 eqid 2622 . 2  |-  (Scalar `  Y )  =  (Scalar `  Y )
5 eqid 2622 . 2  |-  (Scalar `  Z )  =  (Scalar `  Z )
6 eqid 2622 . 2  |-  ( Base `  (Scalar `  Y )
)  =  ( Base `  (Scalar `  Y )
)
7 simp1 1061 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  W  e.  LMod )
8 simp2 1062 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
9 pwssplit1.y . . . 4  |-  Y  =  ( W  ^s  U )
109pwslmod 18970 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X )  ->  Y  e.  LMod )
117, 8, 10syl2anc 693 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  Y  e.  LMod )
12 simp3 1063 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
138, 12ssexd 4805 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
14 pwssplit1.z . . . 4  |-  Z  =  ( W  ^s  V )
1514pwslmod 18970 . . 3  |-  ( ( W  e.  LMod  /\  V  e.  _V )  ->  Z  e.  LMod )
167, 13, 15syl2anc 693 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  Z  e.  LMod )
17 eqid 2622 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
1814, 17pwssca 16156 . . . 4  |-  ( ( W  e.  LMod  /\  V  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  Z ) )
197, 13, 18syl2anc 693 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  W )  =  (Scalar `  Z ) )
209, 17pwssca 16156 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  X )  ->  (Scalar `  W )  =  (Scalar `  Y ) )
217, 8, 20syl2anc 693 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  W )  =  (Scalar `  Y ) )
2219, 21eqtr3d 2658 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  Z )  =  (Scalar `  Y ) )
23 lmodgrp 18870 . . 3  |-  ( W  e.  LMod  ->  W  e. 
Grp )
24 pwssplit1.c . . . 4  |-  C  =  ( Base `  Z
)
25 pwssplit1.f . . . 4  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
269, 14, 1, 24, 25pwssplit2 19060 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
2723, 26syl3an1 1359 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
28 snex 4908 . . . . . . . 8  |-  { a }  e.  _V
29 xpexg 6960 . . . . . . . 8  |-  ( ( U  e.  X  /\  { a }  e.  _V )  ->  ( U  X.  { a } )  e.  _V )
308, 28, 29sylancl 694 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  ( U  X.  { a } )  e.  _V )
31 vex 3203 . . . . . . 7  |-  b  e. 
_V
32 offres 7163 . . . . . . 7  |-  ( ( ( U  X.  {
a } )  e. 
_V  /\  b  e.  _V )  ->  ( ( ( U  X.  {
a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s `  W
) ( b  |`  V ) ) )
3330, 31, 32sylancl 694 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
( ( U  X.  { a } )  oF ( .s
`  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
) )
3433adantr 481 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
) )
35 xpssres 5434 . . . . . . . 8  |-  ( V 
C_  U  ->  (
( U  X.  {
a } )  |`  V )  =  ( V  X.  { a } ) )
36353ad2ant3 1084 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
( U  X.  {
a } )  |`  V )  =  ( V  X.  { a } ) )
3736adantr 481 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( U  X.  { a } )  |`  V )  =  ( V  X.  { a } ) )
3837oveq1d 6665 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
)  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( b  |`  V ) ) )
3934, 38eqtrd 2656 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( V  X.  { a } )  oF ( .s `  W ) ( b  |`  V ) ) )
40 eqid 2622 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
41 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
42 simpl1 1064 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  W  e.  LMod )
43 simpl2 1065 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  U  e.  X )
4421fveq2d 6195 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  Y
) ) )
4544eleq2d 2687 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
a  e.  ( Base `  (Scalar `  W )
)  <->  a  e.  (
Base `  (Scalar `  Y
) ) ) )
4645biimpar 502 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  ( Base `  (Scalar `  Y )
) )  ->  a  e.  ( Base `  (Scalar `  W ) ) )
4746adantrr 753 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
48 simprr 796 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
b  e.  B )
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 16154 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  =  ( ( U  X.  { a } )  oF ( .s `  W
) b ) )
5049reseq1d 5395 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( a ( .s `  Y ) b )  |`  V )  =  ( ( ( U  X.  { a } )  oF ( .s `  W
) b )  |`  V ) )
5125fvtresfn 6284 . . . . . 6  |-  ( b  e.  B  ->  ( F `  b )  =  ( b  |`  V ) )
5251ad2antll 765 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  b
)  =  ( b  |`  V ) )
5352oveq2d 6666 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( V  X.  { a } )  oF ( .s
`  W ) ( F `  b ) )  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( b  |`  V ) ) )
5439, 50, 533eqtr4d 2666 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( a ( .s `  Y ) b )  |`  V )  =  ( ( V  X.  { a } )  oF ( .s `  W ) ( F `  b
) ) )
551, 4, 2, 6lmodvscl 18880 . . . . . 6  |-  ( ( Y  e.  LMod  /\  a  e.  ( Base `  (Scalar `  Y ) )  /\  b  e.  B )  ->  ( a ( .s
`  Y ) b )  e.  B )
56553expb 1266 . . . . 5  |-  ( ( Y  e.  LMod  /\  (
a  e.  ( Base `  (Scalar `  Y )
)  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  e.  B )
5711, 56sylan 488 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  e.  B )
5825fvtresfn 6284 . . . 4  |-  ( ( a ( .s `  Y ) b )  e.  B  ->  ( F `  ( a
( .s `  Y
) b ) )  =  ( ( a ( .s `  Y
) b )  |`  V ) )
5957, 58syl 17 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  (
a ( .s `  Y ) b ) )  =  ( ( a ( .s `  Y ) b )  |`  V ) )
6013adantr 481 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  V  e.  _V )
619, 14, 1, 24, 25pwssplit0 19058 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F : B --> C )
6261ffvelrnda 6359 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  b  e.  B )  ->  ( F `  b
)  e.  C )
6362adantrl 752 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  b
)  e.  C )
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 16154 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Z ) ( F `  b ) )  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( F `  b ) ) )
6554, 59, 643eqtr4d 2666 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  (
a ( .s `  Y ) b ) )  =  ( a ( .s `  Z
) ( F `  b ) ) )
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 19039 1  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857  Scalarcsca 15944   .scvsca 15945    ^s cpws 16107   Grpcgrp 17422    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  frlmsplit2  20112  pwssplit4  37659  pwslnmlem2  37663
  Copyright terms: Public domain W3C validator