Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapisys Structured version   Visualization version   Unicode version

Theorem sigapisys 30218
Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p  |-  P  =  { s  e.  ~P ~P O  |  ( fi `  s )  C_  s }
Assertion
Ref Expression
sigapisys  |-  (sigAlgebra `  O
)  C_  P
Distinct variable group:    O, s
Allowed substitution hint:    P( s)

Proof of Theorem sigapisys
Dummy variables  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sigasspw 30179 . . . . 5  |-  ( t  e.  (sigAlgebra `  O )  -> 
t  C_  ~P O
)
2 selpw 4165 . . . . 5  |-  ( t  e.  ~P ~P O  <->  t 
C_  ~P O )
31, 2sylibr 224 . . . 4  |-  ( t  e.  (sigAlgebra `  O )  -> 
t  e.  ~P ~P O )
4 elrnsiga 30189 . . . . . . 7  |-  ( t  e.  (sigAlgebra `  O )  -> 
t  e.  U. ran sigAlgebra )
54adantr 481 . . . . . 6  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  -> 
t  e.  U. ran sigAlgebra )
6 eldifsn 4317 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P t  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P t  i^i 
Fin )  /\  x  =/=  (/) ) )
76biimpi 206 . . . . . . . . 9  |-  ( x  e.  ( ( ~P t  i^i  Fin )  \  { (/) } )  -> 
( x  e.  ( ~P t  i^i  Fin )  /\  x  =/=  (/) ) )
87adantl 482 . . . . . . . 8  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  -> 
( x  e.  ( ~P t  i^i  Fin )  /\  x  =/=  (/) ) )
98simpld 475 . . . . . . 7  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  x  e.  ( ~P t  i^i  Fin ) )
109elin1d 3802 . . . . . 6  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  x  e.  ~P t
)
119elin2d 3803 . . . . . . 7  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  x  e.  Fin )
12 fict 8550 . . . . . . 7  |-  ( x  e.  Fin  ->  x  ~<_  om )
1311, 12syl 17 . . . . . 6  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  x  ~<_  om )
148simprd 479 . . . . . 6  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  x  =/=  (/) )
15 sigaclci 30195 . . . . . 6  |-  ( ( ( t  e.  U. ran sigAlgebra  /\  x  e.  ~P t )  /\  (
x  ~<_  om  /\  x  =/=  (/) ) )  ->  |^| x  e.  t
)
165, 10, 13, 14, 15syl22anc 1327 . . . . 5  |-  ( ( t  e.  (sigAlgebra `  O
)  /\  x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) )  ->  |^| x  e.  t
)
1716ralrimiva 2966 . . . 4  |-  ( t  e.  (sigAlgebra `  O )  ->  A. x  e.  (
( ~P t  i^i 
Fin )  \  { (/)
} ) |^| x  e.  t )
183, 17jca 554 . . 3  |-  ( t  e.  (sigAlgebra `  O )  -> 
( t  e.  ~P ~P O  /\  A. x  e.  ( ( ~P t  i^i  Fin )  \  { (/)
} ) |^| x  e.  t ) )
19 ispisys.p . . . 4  |-  P  =  { s  e.  ~P ~P O  |  ( fi `  s )  C_  s }
2019ispisys2 30216 . . 3  |-  ( t  e.  P  <->  ( t  e.  ~P ~P O  /\  A. x  e.  ( ( ~P t  i^i  Fin )  \  { (/) } )
|^| x  e.  t ) )
2118, 20sylibr 224 . 2  |-  ( t  e.  (sigAlgebra `  O )  -> 
t  e.  P )
2221ssriv 3607 1  |-  (sigAlgebra `  O
)  C_  P
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   class class class wbr 4653   ran crn 5115   ` cfv 5888   omcom 7065    ~<_ cdom 7953   Fincfn 7955   ficfi 8316  sigAlgebracsiga 30170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-card 8765  df-acn 8768  df-ac 8939  df-siga 30171
This theorem is referenced by:  sigapildsys  30225
  Copyright terms: Public domain W3C validator