Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimaltf Structured version   Visualization version   Unicode version

Theorem smfpreimaltf 40945
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimaltf.x  |-  F/_ x F
smfpreimaltf.s  |-  ( ph  ->  S  e. SAlg )
smfpreimaltf.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfpreimaltf.d  |-  D  =  dom  F
smfpreimaltf.a  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
smfpreimaltf  |-  ( ph  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    D( x)    S( x)    F( x)

Proof of Theorem smfpreimaltf
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 smfpreimaltf.a . 2  |-  ( ph  ->  A  e.  RR )
2 smfpreimaltf.f . . . 4  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
3 smfpreimaltf.x . . . . 5  |-  F/_ x F
4 smfpreimaltf.s . . . . 5  |-  ( ph  ->  S  e. SAlg )
5 smfpreimaltf.d . . . . 5  |-  D  =  dom  F
63, 4, 5issmff 40943 . . . 4  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) ) )
72, 6mpbid 222 . . 3  |-  ( ph  ->  ( D  C_  U. S  /\  F : D --> RR  /\  A. a  e.  RR  {
x  e.  D  | 
( F `  x
)  <  a }  e.  ( St  D ) ) )
87simp3d 1075 . 2  |-  ( ph  ->  A. a  e.  RR  { x  e.  D  | 
( F `  x
)  <  a }  e.  ( St  D ) )
9 breq2 4657 . . . . 5  |-  ( a  =  A  ->  (
( F `  x
)  <  a  <->  ( F `  x )  <  A
) )
109rabbidv 3189 . . . 4  |-  ( a  =  A  ->  { x  e.  D  |  ( F `  x )  <  a }  =  {
x  e.  D  | 
( F `  x
)  <  A }
)
1110eleq1d 2686 . . 3  |-  ( a  =  A  ->  ( { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D
)  <->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) ) )
1211rspcva 3307 . 2  |-  ( ( A  e.  RR  /\  A. a  e.  RR  {
x  e.  D  | 
( F `  x
)  <  a }  e.  ( St  D ) )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
131, 8, 12syl2anc 693 1  |-  ( ph  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  smfpimltmpt  40955  smfpimltxr  40956
  Copyright terms: Public domain W3C validator