| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist1-2 | Structured version Visualization version Unicode version | ||
| Description: An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ist1-2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 20718 |
. . 3
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | 2 | ist1 21125 |
. . . 4
|
| 4 | 3 | baib 944 |
. . 3
|
| 5 | 1, 4 | syl 17 |
. 2
|
| 6 | toponuni 20719 |
. . 3
| |
| 7 | 6 | raleqdv 3144 |
. 2
|
| 8 | 1 | adantr 481 |
. . . . . 6
|
| 9 | eltop2 20779 |
. . . . . 6
| |
| 10 | 8, 9 | syl 17 |
. . . . 5
|
| 11 | 6 | eleq2d 2687 |
. . . . . . . 8
|
| 12 | 11 | biimpa 501 |
. . . . . . 7
|
| 13 | 12 | snssd 4340 |
. . . . . 6
|
| 14 | 2 | iscld2 20832 |
. . . . . 6
|
| 15 | 8, 13, 14 | syl2anc 693 |
. . . . 5
|
| 16 | 6 | adantr 481 |
. . . . . . . . 9
|
| 17 | 16 | eleq2d 2687 |
. . . . . . . 8
|
| 18 | 17 | imbi1d 331 |
. . . . . . 7
|
| 19 | con1b 348 |
. . . . . . . . 9
| |
| 20 | df-ne 2795 |
. . . . . . . . . 10
| |
| 21 | 20 | imbi1i 339 |
. . . . . . . . 9
|
| 22 | disjsn 4246 |
. . . . . . . . . . . . . . 15
| |
| 23 | elssuni 4467 |
. . . . . . . . . . . . . . . 16
| |
| 24 | reldisj 4020 |
. . . . . . . . . . . . . . . 16
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 26 | 22, 25 | syl5bbr 274 |
. . . . . . . . . . . . . 14
|
| 27 | 26 | anbi2d 740 |
. . . . . . . . . . . . 13
|
| 28 | 27 | rexbiia 3040 |
. . . . . . . . . . . 12
|
| 29 | rexanali 2998 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | bitr3i 266 |
. . . . . . . . . . 11
|
| 31 | 30 | con2bii 347 |
. . . . . . . . . 10
|
| 32 | 31 | imbi1i 339 |
. . . . . . . . 9
|
| 33 | 19, 21, 32 | 3bitr4ri 293 |
. . . . . . . 8
|
| 34 | 33 | imbi2i 326 |
. . . . . . 7
|
| 35 | eldifsn 4317 |
. . . . . . . . 9
| |
| 36 | 35 | imbi1i 339 |
. . . . . . . 8
|
| 37 | impexp 462 |
. . . . . . . 8
| |
| 38 | 36, 37 | bitri 264 |
. . . . . . 7
|
| 39 | 18, 34, 38 | 3bitr4g 303 |
. . . . . 6
|
| 40 | 39 | ralbidv2 2984 |
. . . . 5
|
| 41 | 10, 15, 40 | 3bitr4d 300 |
. . . 4
|
| 42 | 41 | ralbidva 2985 |
. . 3
|
| 43 | ralcom 3098 |
. . 3
| |
| 44 | 42, 43 | syl6bb 276 |
. 2
|
| 45 | 5, 7, 44 | 3bitr2d 296 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-topon 20716 df-cld 20823 df-t1 21118 |
| This theorem is referenced by: t1t0 21152 ist1-3 21153 haust1 21156 t1sep2 21173 isr0 21540 tgpt0 21922 |
| Copyright terms: Public domain | W3C validator |