MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknon Structured version   Visualization version   Unicode version

Theorem wwlknon 26742
Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
wwlknon.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wwlknon  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  <->  ( W  e.  ( N WWalksN  G )  /\  ( W `  0
)  =  A  /\  ( W `  N )  =  B ) ) )

Proof of Theorem wwlknon
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 wwlknon.v . . . 4  |-  V  =  (Vtx `  G )
21iswwlksnon 26740 . . 3  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WWalksNOn  G ) B )  =  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  A  /\  ( w `
 N )  =  B ) } )
32eleq2d 2687 . 2  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  <->  W  e.  { w  e.  ( N WWalksN  G )  |  ( ( w `  0
)  =  A  /\  ( w `  N
)  =  B ) } ) )
4 fveq1 6190 . . . . . 6  |-  ( w  =  W  ->  (
w `  0 )  =  ( W ` 
0 ) )
54eqeq1d 2624 . . . . 5  |-  ( w  =  W  ->  (
( w `  0
)  =  A  <->  ( W `  0 )  =  A ) )
6 fveq1 6190 . . . . . 6  |-  ( w  =  W  ->  (
w `  N )  =  ( W `  N ) )
76eqeq1d 2624 . . . . 5  |-  ( w  =  W  ->  (
( w `  N
)  =  B  <->  ( W `  N )  =  B ) )
85, 7anbi12d 747 . . . 4  |-  ( w  =  W  ->  (
( ( w ` 
0 )  =  A  /\  ( w `  N )  =  B )  <->  ( ( W `
 0 )  =  A  /\  ( W `
 N )  =  B ) ) )
98elrab 3363 . . 3  |-  ( W  e.  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  A  /\  ( w `
 N )  =  B ) }  <->  ( W  e.  ( N WWalksN  G )  /\  ( ( W ` 
0 )  =  A  /\  ( W `  N )  =  B ) ) )
10 3anass 1042 . . 3  |-  ( ( W  e.  ( N WWalksN  G )  /\  ( W `  0 )  =  A  /\  ( W `  N )  =  B )  <->  ( W  e.  ( N WWalksN  G )  /\  ( ( W ` 
0 )  =  A  /\  ( W `  N )  =  B ) ) )
119, 10bitr4i 267 . 2  |-  ( W  e.  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  A  /\  ( w `
 N )  =  B ) }  <->  ( W  e.  ( N WWalksN  G )  /\  ( W `  0
)  =  A  /\  ( W `  N )  =  B ) )
123, 11syl6bb 276 1  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  <->  ( W  e.  ( N WWalksN  G )  /\  ( W `  0
)  =  A  /\  ( W `  N )  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   ` cfv 5888  (class class class)co 6650   0cc0 9936  Vtxcvtx 25874   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by:  wwlksnwwlksnon  26810  wspthsnwspthsnon  26811  wspthsnonn0vne  26813  elwwlks2ons3  26848  s3wwlks2on  26849  wpthswwlks2on  26854  elwspths2spth  26862
  Copyright terms: Public domain W3C validator