Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcoellss Structured version   Visualization version   Unicode version

Theorem ellcoellss 42224
Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
ellcoellss  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  A. x  e.  ( M LinCo  V ) x  e.  S )
Distinct variable groups:    x, M    x, S    x, V

Proof of Theorem ellcoellss
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  M  e.  LMod )
2 eqid 2622 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2622 . . . . . . 7  |-  ( LSubSp `  M )  =  (
LSubSp `  M )
42, 3lssss 18937 . . . . . 6  |-  ( S  e.  ( LSubSp `  M
)  ->  S  C_  ( Base `  M ) )
543ad2ant2 1083 . . . . 5  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  S  C_  ( Base `  M ) )
6 sstr 3611 . . . . . . . 8  |-  ( ( V  C_  S  /\  S  C_  ( Base `  M
) )  ->  V  C_  ( Base `  M
) )
7 fvex 6201 . . . . . . . . . 10  |-  ( Base `  M )  e.  _V
87ssex 4802 . . . . . . . . 9  |-  ( V 
C_  ( Base `  M
)  ->  V  e.  _V )
9 elpwg 4166 . . . . . . . . . 10  |-  ( V  e.  _V  ->  ( V  e.  ~P ( Base `  M )  <->  V  C_  ( Base `  M ) ) )
109biimprd 238 . . . . . . . . 9  |-  ( V  e.  _V  ->  ( V  C_  ( Base `  M
)  ->  V  e.  ~P ( Base `  M
) ) )
118, 10mpcom 38 . . . . . . . 8  |-  ( V 
C_  ( Base `  M
)  ->  V  e.  ~P ( Base `  M
) )
126, 11syl 17 . . . . . . 7  |-  ( ( V  C_  S  /\  S  C_  ( Base `  M
) )  ->  V  e.  ~P ( Base `  M
) )
1312ex 450 . . . . . 6  |-  ( V 
C_  S  ->  ( S  C_  ( Base `  M
)  ->  V  e.  ~P ( Base `  M
) ) )
14133ad2ant3 1084 . . . . 5  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( S  C_  ( Base `  M )  ->  V  e.  ~P ( Base `  M ) ) )
155, 14mpd 15 . . . 4  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  V  e.  ~P ( Base `  M )
)
16 eqid 2622 . . . . 5  |-  (Scalar `  M )  =  (Scalar `  M )
17 eqid 2622 . . . . 5  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
182, 16, 17lcoval 42201 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
x  e.  ( M LinCo 
V )  <->  ( x  e.  ( Base `  M
)  /\  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  x  =  ( f
( linC  `  M ) V ) ) ) ) )
191, 15, 18syl2anc 693 . . 3  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( x  e.  ( M LinCo  V )  <-> 
( x  e.  (
Base `  M )  /\  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  x  =  ( f
( linC  `  M ) V ) ) ) ) )
20 lincellss 42215 . . . . . . . . . . . . 13  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( ( f  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  f finSupp  ( 0g `  (Scalar `  M ) ) )  ->  ( f
( linC  `  M ) V )  e.  S
) )
2120imp 445 . . . . . . . . . . . 12  |-  ( ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  (
f  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
)  /\  f finSupp  ( 0g
`  (Scalar `  M )
) ) )  -> 
( f ( linC  `  M ) V )  e.  S )
22 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  ( f ( linC  `  M ) V )  ->  ( x  e.  S  <->  ( f ( linC  `  M ) V )  e.  S ) )
2321, 22syl5ibr 236 . . . . . . . . . . 11  |-  ( x  =  ( f ( linC  `  M ) V )  ->  ( ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  ( f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  f finSupp  ( 0g `  (Scalar `  M ) ) ) )  ->  x  e.  S ) )
2423expd 452 . . . . . . . . . 10  |-  ( x  =  ( f ( linC  `  M ) V )  ->  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( ( f  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  f finSupp  ( 0g `  (Scalar `  M ) ) )  ->  x  e.  S ) ) )
2524com12 32 . . . . . . . . 9  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( x  =  ( f ( linC  `  M ) V )  ->  ( ( f  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  f finSupp  ( 0g `  (Scalar `  M ) ) )  ->  x  e.  S ) ) )
2625adantr 481 . . . . . . . 8  |-  ( ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  x  e.  ( Base `  M
) )  ->  (
x  =  ( f ( linC  `  M ) V )  ->  (
( f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  f finSupp  ( 0g `  (Scalar `  M ) ) )  ->  x  e.  S
) ) )
2726com13 88 . . . . . . 7  |-  ( ( f  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
)  /\  f finSupp  ( 0g
`  (Scalar `  M )
) )  ->  (
x  =  ( f ( linC  `  M ) V )  ->  (
( ( M  e. 
LMod  /\  S  e.  (
LSubSp `  M )  /\  V  C_  S )  /\  x  e.  ( Base `  M ) )  ->  x  e.  S )
) )
2827impr 649 . . . . . 6  |-  ( ( f  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
)  /\  ( f finSupp  ( 0g `  (Scalar `  M ) )  /\  x  =  ( f
( linC  `  M ) V ) ) )  ->  ( ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  x  e.  (
Base `  M )
)  ->  x  e.  S ) )
2928rexlimiva 3028 . . . . 5  |-  ( E. f  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
) ( f finSupp  ( 0g `  (Scalar `  M
) )  /\  x  =  ( f ( linC  `  M ) V ) )  ->  ( (
( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  x  e.  ( Base `  M
) )  ->  x  e.  S ) )
3029com12 32 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  /\  x  e.  ( Base `  M
) )  ->  ( E. f  e.  (
( Base `  (Scalar `  M
) )  ^m  V
) ( f finSupp  ( 0g `  (Scalar `  M
) )  /\  x  =  ( f ( linC  `  M ) V ) )  ->  x  e.  S ) )
3130expimpd 629 . . 3  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( ( x  e.  ( Base `  M
)  /\  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  x  =  ( f
( linC  `  M ) V ) ) )  ->  x  e.  S
) )
3219, 31sylbid 230 . 2  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  ( x  e.  ( M LinCo  V )  ->  x  e.  S
) )
3332ralrimiv 2965 1  |-  ( ( M  e.  LMod  /\  S  e.  ( LSubSp `  M )  /\  V  C_  S )  ->  A. x  e.  ( M LinCo  V ) x  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-linc 42195  df-lco 42196
This theorem is referenced by:  lcosslsp  42227
  Copyright terms: Public domain W3C validator