Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   Unicode version

Theorem lcoss 42225
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  V  C_  ( M LinCo  V ) )

Proof of Theorem lcoss
Dummy variables  x  f  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4171 . . . . . . 7  |-  ( ( v  e.  V  /\  V  e.  ~P ( Base `  M ) )  ->  v  e.  (
Base `  M )
)
21expcom 451 . . . . . 6  |-  ( V  e.  ~P ( Base `  M )  ->  (
v  e.  V  -> 
v  e.  ( Base `  M ) ) )
32adantl 482 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
v  e.  V  -> 
v  e.  ( Base `  M ) ) )
43imp 445 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  v  e.  ( Base `  M )
)
5 eqid 2622 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
6 eqid 2622 . . . . . . 7  |-  (Scalar `  M )  =  (Scalar `  M )
7 eqid 2622 . . . . . . 7  |-  ( 0g
`  (Scalar `  M )
)  =  ( 0g
`  (Scalar `  M )
)
8 eqid 2622 . . . . . . 7  |-  ( 1r
`  (Scalar `  M )
)  =  ( 1r
`  (Scalar `  M )
)
9 equequ1 1952 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  v  <->  y  =  v ) )
109ifbid 4108 . . . . . . . 8  |-  ( x  =  y  ->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  =  if ( y  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
1110cbvmptv 4750 . . . . . . 7  |-  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  =  ( y  e.  V  |->  if ( y  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
125, 6, 7, 8, 11mptcfsupp 42161 . . . . . 6  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
)  /\  v  e.  V )  ->  (
x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g
`  (Scalar `  M )
) )
13123expa 1265 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) ) )
14 eqid 2622 . . . . . . . 8  |-  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )
155, 6, 7, 8, 14linc1 42214 . . . . . . 7  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
)  /\  v  e.  V )  ->  (
( x  e.  V  |->  if ( x  =  v ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) V )  =  v )
16153expa 1265 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( (
x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M ) V )  =  v )
1716eqcomd 2628 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  v  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) V ) )
18 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
196, 18, 8lmod1cl 18890 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  ( 1r
`  (Scalar `  M )
)  e.  ( Base `  (Scalar `  M )
) )
206, 18, 7lmod0cl 18889 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  ( 0g
`  (Scalar `  M )
)  e.  ( Base `  (Scalar `  M )
) )
2119, 20ifcld 4131 . . . . . . . . 9  |-  ( M  e.  LMod  ->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M ) ) )
2221ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  v  e.  V )  /\  x  e.  V )  ->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) )  e.  ( Base `  (Scalar `  M )
) )
2322, 14fmptd 6385 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) : V --> ( Base `  (Scalar `  M )
) )
24 fvex 6201 . . . . . . . 8  |-  ( Base `  (Scalar `  M )
)  e.  _V
25 simplr 792 . . . . . . . 8  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  V  e.  ~P ( Base `  M
) )
26 elmapg 7870 . . . . . . . 8  |-  ( ( ( Base `  (Scalar `  M ) )  e. 
_V  /\  V  e.  ~P ( Base `  M
) )  ->  (
( x  e.  V  |->  if ( x  =  v ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) )  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) : V --> ( Base `  (Scalar `  M )
) ) )
2724, 25, 26sylancr 695 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( (
x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) : V --> ( Base `  (Scalar `  M )
) ) )
2823, 27mpbird 247 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
) )
29 breq1 4656 . . . . . . . 8  |-  ( f  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( f finSupp  ( 0g `  (Scalar `  M ) )  <->  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) ) ) )
30 oveq1 6657 . . . . . . . . 9  |-  ( f  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( f
( linC  `  M ) V )  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) V ) )
3130eqeq2d 2632 . . . . . . . 8  |-  ( f  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( v  =  ( f ( linC  `  M ) V )  <-> 
v  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M ) V ) ) )
3229, 31anbi12d 747 . . . . . . 7  |-  ( f  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) )  ->  ( (
f finSupp  ( 0g `  (Scalar `  M ) )  /\  v  =  ( f
( linC  `  M ) V ) )  <->  ( (
x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g
`  (Scalar `  M )
)  /\  v  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) V ) ) ) )
3332adantl 482 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  v  e.  V )  /\  f  =  ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) )  ->  (
( f finSupp  ( 0g `  (Scalar `  M )
)  /\  v  =  ( f ( linC  `  M ) V ) )  <->  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) finSupp  ( 0g `  (Scalar `  M ) )  /\  v  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) ( linC  `  M ) V ) ) ) )
3428, 33rspcedv 3313 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( (
( x  e.  V  |->  if ( x  =  v ,  ( 1r
`  (Scalar `  M )
) ,  ( 0g
`  (Scalar `  M )
) ) ) finSupp  ( 0g `  (Scalar `  M
) )  /\  v  =  ( ( x  e.  V  |->  if ( x  =  v ,  ( 1r `  (Scalar `  M ) ) ,  ( 0g `  (Scalar `  M ) ) ) ) ( linC  `  M
) V ) )  ->  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  v  =  ( f
( linC  `  M ) V ) ) ) )
3513, 17, 34mp2and 715 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  v  =  ( f
( linC  `  M ) V ) ) )
365, 6, 18lcoval 42201 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
v  e.  ( M LinCo 
V )  <->  ( v  e.  ( Base `  M
)  /\  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  v  =  ( f
( linC  `  M ) V ) ) ) ) )
3736adantr 481 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  ( v  e.  ( M LinCo  V )  <-> 
( v  e.  (
Base `  M )  /\  E. f  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( f finSupp 
( 0g `  (Scalar `  M ) )  /\  v  =  ( f
( linC  `  M ) V ) ) ) ) )
384, 35, 37mpbir2and 957 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  v  e.  V
)  ->  v  e.  ( M LinCo  V ) )
3938ex 450 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
v  e.  V  -> 
v  e.  ( M LinCo 
V ) ) )
4039ssrdv 3609 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  V  C_  ( M LinCo  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   1rcur 18501   LModclmod 18863   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195  df-lco 42196
This theorem is referenced by:  lspsslco  42226
  Copyright terms: Public domain W3C validator